安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约

张舒, 吴明安, 赵文广, 张宜勇, 李小东, 汪晶. 安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约[J]. 岩石学报, 2014, 30(5): 1382-1396.
引用本文: 张舒, 吴明安, 赵文广, 张宜勇, 李小东, 汪晶. 安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约[J]. 岩石学报, 2014, 30(5): 1382-1396.
ZHANG Shu, WU MingAn, ZHAO WenGuang, ZHANG YiYong, LI XiaoDong, WANG Jing. Geochemistry characteristics of Nihe iron deposit in Lujiang, Anhui Province and their constrains to ore genesis[J]. Acta Petrologica Sinica, 2014, 30(5): 1382-1396.
Citation: ZHANG Shu, WU MingAn, ZHAO WenGuang, ZHANG YiYong, LI XiaoDong, WANG Jing. Geochemistry characteristics of Nihe iron deposit in Lujiang, Anhui Province and their constrains to ore genesis[J]. Acta Petrologica Sinica, 2014, 30(5): 1382-1396.

安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约

  • 基金项目:

    本文受国家“973”项目(2012CB416806)、中国地质调查局地质调查工作项目(1212011120862)、深部探测技术与实验研究专项(Sinoprobe03-04-06)和中国地质科学院地质研究所合作研究专题(DD01-16)联合资助.

Geochemistry characteristics of Nihe iron deposit in Lujiang, Anhui Province and their constrains to ore genesis

  • 泥河铁矿位于长江中下游成矿带庐枞中生代火山岩盆地中,矿床具有典型玢岩型铁矿的地质特征,是研究玢岩型铁矿成因的良好对象。本次工作在详细的野外观察及室内研究的基础上,对泥河铁矿主成矿期矿石矿物的稀土元素、硫同位素及铅同位素进行了分析测试工作。主成矿期磁铁矿、黄铁矿稀土元素配分模式呈现LREE富集、HREE曲线平直、Eu轻微负异常的特征,与赋矿砖桥组熔岩、闪长玢岩的稀土元素配分模式较为一致,结合矿石矿物与围岩的铅同位素特征,推测成矿金属元素主要来源于赋矿的火山-次火山岩,可能有少量壳源物质的加入。黄铁矿与硬石膏的硫同位素表现出双峰式分布的特征,说明岩浆活动与三叠纪膏盐层均对硫有所贡献。三叠纪膏盐层在泥河铁矿的成矿过程中,不仅仅是重要的矿化剂,同样是铁质沉淀的氧化剂。综合矿床地质与地球化学特征,认为泥河铁矿是由次火山岩体演化产生的含矿高温热液在闪长玢岩穹窿顶部,通过交代充填作用形成的玢岩型铁硫矿床。
  • 加载中
  • [1]

    Cai BJ. 1980. The relationship of gypsum salt beds with endogenic copper and iron ores in the Middle-Lower Yangtze Valley. Geochimica, (2): 193-199 (in Chinese with English abstract)

    [2]

    Chang YF, Liu XP, Wu YC et al. 1991. The Copper-iron Belt of the Lower and Middle Reachers of the Changjiang River. Beijing: Geological Publishing House, 1-359 (in Chinese)

    [3]

    Chen YC, Zhang RH, Sheng JF et al. 1982. The mineralization and alteration of the porphyry iron deposits and their mechanism. Bulletin of Institute of Mineral Resources, China Academy of Geological Sciences, 1(1): 1-29 (in Chinese with English abstract)

    [4]

    Chu GZ, Huang XC, Zhang CH et al. 1990. Discussion on the ore-control factors of the Tongling area, Anhui. Geology of Anhui, 5(1): 47-58 (in Chinese with English abstract)

    [5]

    Dong SW, Xiang HS, Gao R et al. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reachers of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542 (in Chinese with English abstract)

    [6]

    Duan C, Li YH, Yuan SD et al. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257 (in Chinese with English abstract)

    [7]

    Fan Y, Zhou TF, Han L et al. 2012. Ore-forming fluid characteristic of Nihe iron deposit in Lu-Zong Basin, Anhui Province and its significance to ore genesis. Acta Petrologica Sinica, 28(10): 3113-3124 (in Chinese with English abstract)

    [8]

    Frietsch DR and Perdahl JA. 1995. Rear earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore type. Ore Geology Reviews, 9(6): 489-510

    [9]

    Hong W, Zhang ZH, Jiang ZS et al. 2012. Magnetite and garnet trace element characteristics from the Chagangnuoer iron deposit in the western Tianshan Mountain, Xinjiang, NW China: Constran for ore genesis. Acta Petrologica Sinica, 28(7): 2089-2102 (in Chinese with English abstract)

    [10]

    Hou T, Zhang ZC, Du YS and Li ST. 2009. Geology of the Gushan iron oxide deposit associated with dioritic porphyries, eastern Uangtze craton, SE China. International Geology Review, 51(6): 520-541

    [11]

    Hou T, Zhang ZC, Encarnacion J et al. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-lower Yangtze Valley, eastern China: Constraints on petrogenesis and iron sources. Lithos, 119(3-4): 330-334

    [12]

    Hou T, Zhang ZC and Kusky T. 2011. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews, 43(1): 333-346

    [13]

    Hou T, Zhang ZC, Encarnacion J et al. 2012. Geochronology/geochemistry of the Washan dioritic porphyry associated with Kiruna-type iron ores, Middle-Lower Yangtze River Valley, eastern China: Implications for petrogenesis/mineralization. International Geology Review, 54(11): 1332-1352

    [14]

    Huang QT and Yin GP. 1989. Luohe Iron Deposit in Lujiang, Anhui. Beijing: Geological Publishing House, 131-167 (in Chinese)

    [15]

    Hutchinson RW. 1990. Precious metals in massive base metal sulfide deposits. Geologische Rundschau, 79(2): 241-263

    [16]

    Institute of Geochemistry, China Academy of Sciences. 1987. Ore-forming Mechanism of Ningwu Type Iron Deposits. Beijing: Science Press, 1-152 (in Chinese)

    [17]

    Li JL, Zhang GL, Su LH. 1986. An experimental study on the iron ore deposits formed by "ore magma" related to FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6 system. Bulletin of Institute of Mineral Resources, China Academy of Geological Sciences, 5(2): 198-204 (in Chinese with English abstract)

    [18]

    Li YH, Xie GQ, Duan C, Han D and Wang CY. 2013. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores. Acta Geologica Sinica, 87(9): 1324-1334 (in Chinese with English abstract)

    [19]

    Lu B, Hu SX, Lin YS et al. 1990. A discussion on genesis and metallogenic model of Ningwu-type iron deposits. Mineral Deposits, 9(1): 13-25 (in Chinese with English abstract)

    [20]

    Lü QT, Yan JY, Shi DN et al. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 626: 60-77

    [21]

    Mao JW, Stein H, Du AD et al. 2004. Molybdenite Re-Os precise datin for molybdenite from Cu-Au-Mo deposite in the Middle-lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1):121-131(in Chinese with English abstract)

    [22]

    Mao JW, Shao YJ, Xie GQ et al. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middel-Lower Yangtze Valley metallogenic. Mineral Deposits, 28(2):109-119 (in Chinese with English abstract)

    [23]

    Mao JW, Duan C, Liu JL et al. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14 (in Chinese with English abstract)

    [24]

    Ningwu Project Group. 1978. The Porphyrite Iron Deposit of Ningwu. Beijing: Geological Publishing House, 1-320 (in Chinese)

    [25]

    Nystrm JO, Billstrm K, Henríquez F et al. 2008. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF, 130(4): 177-188

    [26]

    hlander B, Billstrm K and Híglenius E. 1989. Geochemistry of the Proterozoic wolframite-bearing greisen veins and the associated granite at Rostberget, northern Sweden. Chemical Geology, 78(2): 135-150

    [27]

    Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: Wiley-Interscience, 509-567

    [28]

    Paster TP, Schuwecker DS and Haskin LA. 1974. The behavior of some trace elements during solidification of the Skaergaard layerd series. Geochimica et Cosmochimica Acta, 38(10): 1549-1577

    [29]

    Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315

    [30]

    Ren QJ, Liu XS, Xu ZW. 1991. Mesozoic Volcano-tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Beijing: Geological Publishing House, 1-145 (in Chinese)

    [31]

    Rona PA. 1984. Hydrothermal mineralization at seafloor spreading centers. Earth Science Reviews, 20(1): 1-104

    [32]

    Schock HH. 1979. Distribution of rear-earth and other trace elements in magnetite. Chemical Geology, 26(1-2): 119-133

    [33]

    Shen QH, Song HX and Zhao ZR. 2009. Characteristics of rare earth elements and trace elements in Hanwang Neo-Archaern banded iron formation, Shandong Province. Acta Geoscientica Sinica, 30(6): 693-699 (in Chinese with English abstract)

    [34]

    Sillitoe RH. 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita, 38(7): 787-812

    [35]

    Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters, 26(2): 207-221

    [36]

    Sun SS and McDough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society of London, 42: 313-345

    [37]

    Tan YJ, Zeng JN, Zeng Y et al. 2010. Zircon LA-ICP-MS U-Pb dating of ore-bearing pyroxene-trachyandesite porphyry and its geological significance in Luohe-Nihe iron ore field in Luzong basion, southern Anhui, China. Geological Bulletin of China, 29(6): 851-862 (in Chinese with English abstract)

    [38]

    Tang YC, Wu YC, Chu GZ et al. 1998. Geology of Copper-gold Polymetallic Deposits in along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-359 (in Chinese)

    [39]

    Webster JD. 2004. The exsolution of magmatic hydrosaline chloride liquids. Chemical Geology, 210(1-4): 33-48

    [40]

    Wu GG, Zhang D, Di YJ et al. 2008. The age of SHRIMP zircon in the intrusion of Tongling ore concentration area and deep geodynamic background. Science in China (Series D), 38(5): 630-645 (in Chinese)

    [41]

    Wu LR. 1978. The basic thoery of the Mesozoic volcanic Ningwu-type iron doposit, eastern China. Geology and Exploration, 1(6): 1-7 (in Chinese)

    [42]

    Wu MA, Wang QS, Zheng GW et al. 2011. Discovery of the Nihe iron deposit in Lujiang, Anhui, and its exploration significance. Acta Geologica Sinica, 85(5): 802-809 (in Chinese with English abstract)

    [43]

    Yu XY and Bai ZH. 1981. Latitic series in Lujiang-Zongyang region. Geochemical, 5(1): 57-65

    [44]

    Yuan F, Zhou TF, Fan Y et al. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract)

    [45]

    Yuan JZ, Zhang F, Yin HJ et al. 1997. Systematical study on ore-magma genesis of Meishan iron ore deposits. Geoscience, 11(2): 170-176 (in Chinese with English abstract)

    [46]

    Zhai YS, Yao SZ, Lin XD et al. 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Beijing: Geological Publishing House, 12-35 (in Chinese)

    [47]

    Zhang LJ. 2011. Polymetallic mineralization and associated magmatic and volcanic activity in the Luzong basin, Anhui Province, eastern China. Ph. D. Dissertation. Hefei: Hefei Univeristy of Technology, 1-239 (in Chinese with English summary)

    [48]

    Zhang RH. 1980. On the mechanism of geochemical zoning of the altered country rock of the porphyrite iron ore in the Middle-Lower Changjiang Valley. Acta Geologica Sinica, 54(1): 70-85 (in Chinese with English abstract)

    [49]

    Zhang S, Wu MA, Wang J et al. 2014. The mineralization related with the syentie in Luzong Basin, Anhui Province. Acta Geologica Sinica, 88(4): 519-531 (in Chinese with English abstract)

    [50]

    Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247-263

    [51]

    Zhang ZC, Hou T, Li HM, Li JW, Zhang ZH and Song XY. 2014. Enrichment mechanism of iron in magmatic-hydrothermal system. Acta Petrologica Sinica, 30(5): 1189-1204(in Chinese with English abstract)

    [52]

    Zhang ZX, Yang FQ, Chai FM et al. 2011. A study of REE geochemistry of Wutubulake iron deposit in Altay, Xinjiang. Mineral Deposits, 30(1): 87-102 (in Chinese with English abstract)

    [53]

    Zhao WG, Wu MA, Zhang YY et al. 2011. Geological characteristics and genesis of the Nihe Fe-S deposit, Lujiang County, Anhui Province. Acta Geologica Sinica, 85(5): 789-802 (in Chinese with English abstract)

    [54]

    Zhou TF, Fan Y, Yuan F et al. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract)

    [55]

    Zhou TF, Fan Y, Yuan F et al. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to minerlizations. Acta Petrologica Sinica, 26(9): 2694-2714 (in Chinese with English abstract)

    [56]

    Zhou TF, Wang B, Fan Y et al. 2012. Apatite-actinolite-magnetite deposit related to A-type granite in Luzong basin: Evidence from Makou iron deposit. Acta Petrologica Sinica, 28(10): 3087-3098 (in Chinese with English abstract)

    [57]

    Zhu BQ. 1998. The Theory and Application of the Isotope Systerm in Geoscience: The Evolution of Chinese Crust. Beijing: Science Press, 216-235 (in Chinese)

    [58]

    蔡本俊. 1980. 长江中下游地区内生铁铜矿床与膏盐的关系. 地球化学, (2): 193-199

    [59]

    常印佛, 刘湘培, 吴言昌等. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社: 1-359

    [60]

    陈毓川, 张荣华, 盛继福等. 1982. 玢岩铁矿矿化蚀变作用及成矿机理. 中国地质科学院矿床地质研究所所刊, 1(1): 1-29

    [61]

    储国正, 黄许陈, 张成火等. 1990. 安徽铜陵地区成矿控制因素的探讨. 安徽地质, 5(1): 47-58

    [62]

    董树文, 向怀顺, 高锐等. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542

    [63]

    段超, 李延河, 袁顺达等. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257

    [64]

    范裕, 周涛发, 郝麟等. 2012. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示. 岩石学报, 28(10): 3113-3124

    [65]

    洪为, 张作衡, 姜宗胜等. 2012. 新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约. 岩石学报, 28(7): 2089-2102

    [66]

    黄清涛, 尹恭沛. 1989. 安徽庐江罗河铁矿. 北京: 地质出版社, 131-167

    [67]

    中国科学院地球化学研究所. 1987. 宁芜型铁矿床形成机理. 北京: 科学出版社,1-152

    [68]

    李九玲, 张桂兰, 苏良赫. 1986. 与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究. 中国地质科学院矿床地质研究所所刊, 5(2): 198-204

    [69]

    李延河, 谢桂青, 段超, 韩丹, 王成玉. 2013. 膏盐层在矽卡岩型铁矿成矿中的作用. 地质学报, 87(9): 1324-1334

    [70]

    卢冰, 胡受奚, 蔺雨时等. 1990. 宁芜型铁矿床成因和成矿模式的探讨. 矿床地质, 9(1): 13-25

    [71]

    毛景文, Stein H, 杜安道. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1):121-131

    [72]

    毛景文, 邵拥军, 谢桂青等. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2):109-119

    [73]

    毛景文, 段超, 刘佳林等. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1): 1-14

    [74]

    宁芜玢岩铁矿编写组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1-320

    [75]

    任启江, 刘孝善, 徐兆文. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京: 地质出版社, 1-145

    [76]

    沈其韩, 宋会侠, 赵子然. 2009. 山东韩旺新太古代条带状铁矿的稀土和微量元素特征. 地球学报, 30(6): 693-699

    [77]

    覃永军, 曾键年, 曾勇等. 2010. 安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(6): 851-862

    [78]

    唐永成, 吴言昌, 储国正等. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-359

    [79]

    吴淦国, 张达, 狄永军等. 2008. 铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景. 中国科学(D辑), 38(5): 630-645

    [80]

    吴利仁. 1978. 我国东部中生代陆相火山岩宁芜型铁矿形成的基本原理. 地质与勘探, 1(6): 1-7

    [81]

    吴明安, 汪青松, 郑光文等. 2011. 安徽庐江泥河铁矿的发现及意义. 地质学报, 85(5): 802-809

    [82]

    于学元, 白正华. 1981. 庐枞地区安粗岩系. 地球化学, 5(1): 57-65

    [83]

    袁峰, 周涛发, 范裕等. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702

    [84]

    袁家铮, 张峰, 殷纯嘏等. 1997. 梅山铁矿矿浆成因的系统探讨. 现代地质, 11(2): 170-176

    [85]

    翟裕生, 姚书振, 林新多等. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 12-35

    [86]

    张乐骏. 2011. 安徽庐枞盆地成岩成矿作用研究. 博士学位论文. 合肥: 合肥工业大学: 1-239

    [87]

    张荣华. 1980. 长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理. 地质学报, 54(1): 70-85

    [88]

    张舒, 吴明安, 汪晶等. 2014. 安徽庐枞盆地与正长岩有关的成矿作用. 地质学报, 88(4):519-531

    [89]

    张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报,30(5): 1189-1204

    [90]

    张志欣, 杨富全, 柴凤梅等. 2011. 新疆阿尔泰乌吐布拉克铁矿床稀土元素地球化学研究. 矿床地质, 30(1): 87-102

    [91]

    赵文广,吴明安,张宜勇等. 2011. 安徽省庐江县泥河铁硫矿床地质特征及成因初步分析. 地质学报,85(5): 789-802

    [92]

    周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678

    [93]

    周涛发, 范裕, 袁峰等. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714

    [94]

    周涛发, 王彪, 范裕等. 2012. 庐枞盆地与A型花岗岩有关的磁铁矿-阳起石-磷灰石矿床——以马口铁矿床为例. 岩石学报, 28(10): 3087-3098

    [95]

    朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京: 科学出版社,216-235

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2013-10-01
修回日期:  2014-01-28
刊出日期:  2014-05-31

目录