基于地幔动力学模拟推断云南地区剪切波各向异性源的深度

朱涛. 2018. 基于地幔动力学模拟推断云南地区剪切波各向异性源的深度. 地球物理学报, 61(3): 948-962, doi: 10.6038/cjg2018L0137
引用本文: 朱涛. 2018. 基于地幔动力学模拟推断云南地区剪切波各向异性源的深度. 地球物理学报, 61(3): 948-962, doi: 10.6038/cjg2018L0137
ZHU Tao. 2018. The depth of shear wave splitting anisotropy in the Yunnan region inferred from mantle convection simulation. Chinese Journal of Geophysics (in Chinese), 61(3): 948-962, doi: 10.6038/cjg2018L0137
Citation: ZHU Tao. 2018. The depth of shear wave splitting anisotropy in the Yunnan region inferred from mantle convection simulation. Chinese Journal of Geophysics (in Chinese), 61(3): 948-962, doi: 10.6038/cjg2018L0137

基于地幔动力学模拟推断云南地区剪切波各向异性源的深度

  • 基金项目:

    地震行业科研专项(201408014)和地震动力学国家重点实验室开放基金项目(LED2017B08)共同资助

详细信息
    作者简介:

    朱涛, 男, 1973年生, 研究员, 主要从事地幔动力学模拟以及电阻率层析成像的方法和应用研究.E-mail:zxl_tao@126.com

  • 中图分类号: P313;P541

The depth of shear wave splitting anisotropy in the Yunnan region inferred from mantle convection simulation

  • 地震各向异性与地幔对流导致的变形存在因果关系,因此地幔对流模拟可被用来预测地震各向异性,并推测剪切波各向异性地幔源的深度.本文建立了基于地震速度结构的地幔对流模型来预测云南地区剪切波分裂的快波方向,它同时受地表板块运动和地幔内部的温度扰动所驱动.通过与观测结果进行对比分析,推测在云南地区西北部和东部区域,剪切波各向异性源主要存在于岩石圈中.在西南部和四川盆地及其西缘,地幔流动可能是剪切波各向异性的主要贡献者,各向异性层分别位于210~330 km和170~330 km深度,导致西南部剪切波各向异性的地幔可能处于大幅度的剪切变形状态,而四川盆地及其西缘主要处于中等强度的剪切变形状态.

  • 加载中
  • 图 2 

    地球各圈层对剪切波各向异性的贡献

    Figure 2. 

    Contributions of spheres within the earth to shear wave splitting

    图 3 

    本文研究使用的随深度变化的(a)黏度和(b)温度剖面

    Figure 3. 

    Profiles of depth-dependent viscosity (a) and temperature structures (b) used in this study

    图 4 

    模型预测的不同区域的(a)地幔对流速度方向和(b)地幔最大水平拉张速率方向与快波方向之间的平均角度差异随深度的变化

    Figure 4. 

    Mean angular difference between mantle convective velocity directions (a) and mantle maximum elongation directions (b) and fast polarization directions at different depths in four sub-regions

    图 5 

    不同区域的(a)地幔平均流动速率和(b)地幔平均最大拉伸速率随深度的变化曲线

    Figure 5. 

    Average mantle flow rates (a) and average mantle maximum elongation rates (b) varying with depth in four sub-regions

    图 6 

    自由热对流模型预测的岩石圈底部的地幔水平流动方向(黑色箭头代表流动方向)

    Figure 6. 

    Horizontal mantle flow directions at the base of the lithosphere predicted by the free thermal mantle flow model(Dark arrows indicate flow directions)

    表 1 

    模型的物理和几何参数值

    Table 1. 

    Physical and geometric parameters used in this study

    参数意义
    R0地球半径6.371×106 m
    ΔT上、下边界温度差3500 K
    ρ0参考地幔密度3.3×103 kg·m-3
    κ热扩散系数1×10-6m2·s-1
    k热传导系数3.2 W·m-1·K-1
    α热膨胀系数2.5×10-5K-1
    g重力加速度9.8 m·s-2
    R气体常量8.31 J·mol-1·K-1
    η0参考地幔黏度1021Pa·s
    下载: 导出CSV
  •  

    Alsina D, Snieder R. 1995. Small-scale sublithospheric continental mantle deformation:constraints from SKS splitting observations. Geophysical Journal International, 123(2):431-448. doi: 10.1111/gji.1995.123.issue-2

     

    An M J, Shi Y L. 2006. Review on lithospheric thickness research of the Chinese continent. Earth Science Frontiers (in Chinese), 13(3):23-30. https://www.researchgate.net/publication/292277886_Review_on_lithospheric_thickness_research_of_the_Chinese_continent

     

    Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysiscs, Geosystems, 12(11):Q11001, doi:10.1029/2011GC003751.

     

    Bai L, Iidaka T, Kawakatsu H, et al. 2009. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data. Physics of the Earth and Planetary Interiors, 176(1-2):33-43. doi: 10.1016/j.pepi.2009.03.008

     

    Bao C, Yang X J, Li D X. 1985. Characteristics of geological structure and predication of gas prospect of Sichuan basin. Natural Gas Industry (in Chinese), 5(4):1-11. https://www.sciencedirect.com/science/article/pii/S2468256X17300603

     

    Becker T W, Chevrot S, Schulte-Pelkum V, et al. 2006. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. Journal of Geophysical Research, 111(B8):B08309, doi:10.1029/2005JB004095.

     

    Behn M D, Conrad C P, Silver P G. 2004. Detection of upper mantle flow associated with the African Superplume. Earth and Planetary Science Letters, 224(3-4):259-274. doi: 10.1016/j.epsl.2004.05.026

     

    Bull A L, McNamara A C, Becker T W, et al. 2010. Global scale models of the mantle flow field predicted by synthetic tomography models. Physics of Earth and Planetary Interiors, 182(3-4):129-138. doi: 10.1016/j.pepi.2010.03.004

     

    Cai Y, Wu J P, Fang L H, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting. Journal of Asian Earth Sciences, 121:120-126. doi: 10.1016/j.jseaes.2016.02.005

     

    Calderwood A R. 1999. Mineral physics constraints on the temperature and composition of the Earth's mantle[Ph. D. thesis]. Columbia, Canada: University of British Columbia.http://www.mendeley.com/catalog/mineral-physics-constraints-chemical-composition-temperature-earths-mantle/

     

    Chang L J, Ding Z F, Wang C Y. 2015.Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, china. Chinese Journal of Geophysics (in Chinese), 58(11):4052-4067, doi:10.6038/cjg20151114.

     

    Chang L J, Wang C Y, Ding Z F. 2006. A study on SKS splitting beneath the Yunnan region. Chinese Journal of Geophysics (in Chinese), 49(1):197-204. https://www.researchgate.net/publication/298248391_A_study_on_SKS...

     

    Chen Y, Zhang Z J, Sun C Q, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 24(3-4):946-957. doi: 10.1016/j.gr.2012.04.003

     

    Conrad C P, Behn M D, Silver P G. 2007. Global mantle flow and the development of seismic anisotropy:Differences between the oceanic and continental upper mantle. Journal of Geophysical Research:Solid Earth, 112(B7):B07317, doi:10.1029/2006JB004608.

     

    Cordier P, Ungár T, Zsoldos L, et al. 2004. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle. Nature, 428(6985):837-840. doi: 10.1038/nature02472

     

    Couvy H, Frost D J, Heidelbach F, et al. 2004. Shear deformation experiments of forsterite at 11 GPa-1400℃ in the multianvil apparatus. European Journal of Mineralogy, 16(6):877-889. doi: 10.1127/0935-1221/2004/0016-0877

     

    Crampin S. 1984. Effective anisotropic elastic-constants for wave propagation through cracked solids. Geophysical Journal International, 76(1):135-145. doi: 10.1111/j.1365-246X.1984.tb05029.x

     

    Davis P M. 2003. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle. Journal of Geophysical Research:Solid Earth, 108(B1):2052, doi:10.1029/2001JB000637.

     

    Flesch L M, Holt W, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth and Planetary Science Letters, 238(1-2):248-268. doi: 10.1016/j.epsl.2005.06.023

     

    Forte A M, Perry H K C. 2000. Geodynamic evidence for a chemically depleted continental tectosphere. Science, 290(5498):1940-1944, doi:10.1126/science.290.5498.1940.

     

    Forte A M, Quéré S, Moucha R, et al. 2010. Joint seismic-geodynamic-mineral physical modelling of African geodynamics:A reconciliation of deep-mantle convection with surface geophysical constraints. Earth and Planetary Science Letters, 295(3-4):329-341. doi: 10.1016/j.epsl.2010.03.017

     

    Fu R S, Huang J H. 1993. Mantle convection model constrained on several geophysical data. Acta Geophysica Sinica (in Chinese), 36(3):297-307. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199303004.htm

     

    Gaboret C, Forte A M, Montagner J P. 2003. The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth and Planetary Science Letters, 208(3-4):219-233. doi: 10.1016/S0012-821X(03)00037-2

     

    Gao S S, Liu K H, Abdelsalam M G. 2010. Seismic anisotropy beneath the Afar Depression and adjacent areas:Implications for mantle flow. Journal of Geophysical Research:Solid Earth, 115(B12):B12330, doi:10.1029/2009JB007141.

     

    Gao Y, Shi Y T, Liang W, et al. 2008. Systematic analysis method of shear-wave splitting SAM (2007):software system. Earthquake Research in China (in Chinese), 24(4):345-353. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD200804004.htm

     

    Garnero E J, Revenaugh J, Williams Q, et al. 1998. Ultralow velocity zone at the core-mantle boundary. //Gurnis M, Wysession J, Williams Q, et al, Eds. The Core-Mantle Boundary Region Washington, DC: AGU, 319-334.

     

    Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 360(1800):2475-2491. doi: 10.1098/rsta.2002.1077

     

    He X B, Long M D. 2011. Lowermost mantle anisotropy beneath the northwest-ern Pacific:Evidence from PcS, ScS, SKS and SKKS phases. Geochemistry, Geophysics, Geosystems, 12(12):Q12012, doi:10.1029/2011GC003779.

     

    Hu J F, Yang H Y, Xu X Q, et al. 2012. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau. Gondwana Research, 22(3-4):1060-1067. doi: 10.1016/j.gr.2012.01.003

     

    Huang Z C, Wang L S, Xu M J, et al. 2015. Teleseismic shear-wave splitting in SE Tibet:insight into complex crust and upper-mantle deformation. Earth and Planetary Science Letters, 432:354-362. doi: 10.1016/j.epsl.2015.10.027

     

    Huang Z C, Wang L S, Xu M J, et al. 2007. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China. Geophysical Research Letters, 34(20):L20301, doi:10.1029/2007GL031236.

     

    Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2):105-117. doi: 10.1016/j.epsl.2011.03.038

     

    Iitaka T, Hirose K, Kawamura K, et al. 2004. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. Nature, 430(6998):442-445. doi: 10.1038/nature02702

     

    Jordan T H. 1978. Composition and development of the continental tectosphere. Nature, 274(5671):544-548, doi:10.1038/274544a0.

     

    Karato S I, Zhang S Q, Wenk H R. 1995. Superplasticity in Earth's lower mantle:Evidence from seismic anisotropy and rock physics. Science, 270(5235):458-461. doi: 10.1126/science.270.5235.458

     

    Kendall M, Silver P. 1988. Mechanisms for seismic anisotropy in the lowermost mantle. Mineralogical Magazine, 62A(2):761-762. http://www.minersoc.org/pages/Archive-MM/Volume_62A/62A-2-761.htm

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the earth from traveltimes. Geophysical Journal International, 122(1):108-124. doi: 10.1111/gji.1995.122.issue-1

     

    Koulakov I. 2011. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. Journal of Geophysical Research, 116(B4):B04301, doi:10.1029/2010JB007938.

     

    Legendre C, Deschamps F, Zhao L, et al. 2015. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet. Scientific Reports, 5:16644, doi:10.1038/srep16644.

     

    Lev E, Long M D, Van der Hilst R D. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet Sci Lett, 251:293-304. doi: 10.1016/j.epsl.2006.09.018

     

    Li L, Raterron P, Weidner D, et al. 2003. Olivine flow mechanisms at 8 GPa. Physics of Earth and Planetary Interiors, 138(2):113-129. doi: 10.1016/S0031-9201(03)00065-7

     

    Li L, Raterron P, Weidner D, et al. 2004. Stress measurements of deforming olivine at high pressure. Physics of Earth and Planetary Interiors, 143-144:357-367. doi: 10.1016/j.pepi.2003.09.022

     

    Li Y H, Gao M T, Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611:51-60. doi: 10.1016/j.tecto.2013.11.019

     

    Liu K H, Gao S S. 2011. Estimation of the depth of anisotropy using spatial coherency of shear-wave splitting parameters. Bulletin of the Seismological Society of America, 101(5):2153-2161. doi: 10.1785/0120100258

     

    Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3-4):341-354. doi: 10.1016/j.epsl.2010.06.036

     

    Long M D, Lynner C. 2015. Seismic anisotropy in the lowermost mantle near the Perm Anomaly. Geophysical Research Letters, 42(17):7073-7080, doi:10.1002/2015GL065506.

     

    Long M D, Silver P G. 2009. Shear wave splitting and mantle anisotropy:Measurements, interpretations, and new directions. Surveys in Geophysics, 30(4-5):407-461. doi: 10.1007/s10712-009-9075-1

     

    Lynner C, Long M D. 2012. Evaluating contributions to SK(K)S splitting from lower mantle anisotropy:A case study from station DBIC, Côte D'Ivoire. Bulletin of the Seismological Society of America, 102(3):1030-1040. doi: 10.1785/0120110255

     

    Mainprice D, Silver P G. 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of Earth and Planetary Interiors, 78(3-4):257-280. doi: 10.1016/0031-9201(93)90160-B

     

    Mainprice D, Tommasi A, Couvy H, et al. 2005. Pressure sensitivity of Olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature, 433(7027):731-733. doi: 10.1038/nature03266

     

    Marone F, Romanowicz B. 2007. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447(7141):198-201. doi: 10.1038/nature05742

     

    McNamara A K, Van Keken P E, Karato S I. 2002. Development of anisotropic struc-ture in the Earth's lower mantle by solid-state convection. Nature, 416(6878):310-314. doi: 10.1038/416310a

     

    McNamara D E, Owens T J. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range province using Moho Ps converted phases. Journal of Geophysical Research, 98(B7):12003-12017. doi: 10.1029/93JB00711

     

    Montagner J P, Kennett B L N. 1996. How to reconcile body-wave and normal-mode reference earth models. Geophysical Journal International, 125(1):229-248. doi: 10.1111/gji.1996.125.issue-1

     

    Moore M M, Garnero E J, Lay T, et al. 2004. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. Journal of Geophysical Research, 109(B2):B02319, doi:10.1029/2003JB002546.

     

    Moresi L, Zhong S J, Gurnis M. 1996. The accuracy of finite element solutions of Stokes flow with strongly varying viscosity. Physics of the Earth and Planetary Interiors, 97(1-4):83-94. doi: 10.1016/0031-9201(96)03163-9

     

    Murakami M, Ohishi Y, Hirao N, et al. 2012. A perovskitic lower mantle inferred form high-pressure, high-temperature sound velocity data. Nature, 485(7396):90-94. doi: 10.1038/nature11004

     

    Niu F L, Perez A M. 2004. Seismic anisotropy in the lower mantle:A comparison of waveform splitting of SKS and SKKS. Geophysical Research Letters, 31(24):L24612, doi:10.1029/2004GL021196.

     

    Pandey S, Yuan X H, Debayle E, et al. 2015. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography. Geophysical Research Letters, 42(11):4326-4334. doi: 10.1002/2015GL063921

     

    Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167(1):361-379. doi: 10.1111/gji.2006.167.issue-1

     

    Roy S K, Kumar M R, Srinagesh D. 2014. Upper and lower mantle anisotropy inferred from comprehensive SKS and SKKS splitting measurements from India. Earth and Planetary Science Letters, 392:192-206. doi: 10.1016/j.epsl.2014.02.012

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation:what have we learned from shear wave splitting?. Review Geophysics, 37(1):65-106. doi: 10.1029/98RG02075

     

    Shephard G E, Müller R D, Liu L, et al. 2010. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nature Geoscience, 3(12):870-875. doi: 10.1038/ngeo1017

     

    Shi Y T. 2014. Preliminary study on the characteristics of seismic anisotropy beneath the southern segment of North-South seismic belt using numerical simulation[Ph. D. thesis] (in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration, 72-73.

     

    Shi Y T, Gao Y, Su Y J, et al. 2012. Shear-wave splitting beneath Yunnan area of Southwest China. Earthquake Science, 25(1):25-34. doi: 10.1007/s11589-012-0828-4

     

    Shi Y T, Gao Y, Tai L X, et al. 2015. The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China. Journal of Asian Earth Sciences, 111:505-516. doi: 10.1016/j.jseaes.2015.06.015

     

    Shi Y T, Gao Y, Wu J, et al. 2009. Crustal seismic anisotropy in Yunnan, Southwestern China. Journal of Seismology, 13(2):287-299. doi: 10.1007/s10950-008-9128-9

     

    Shi Y T, Gao Y, Zhang Y J, et al. 2013. Shear-wave splitting in the crust in Eastern Songpan-Garzê block, Sichuan-Yunnan block and Western Sichuan Basin. Chinese Journal of Geophysics (in Chinese), 56(2):481-494, doi:10.6038/cjg20130212.

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research:Solid Earth, 96(B10):16429-16454. doi: 10.1029/91JB00899

     

    Sol S, Meltzer A, Bürgmann R, et al. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6):563-566. doi: 10.1130/G23408A.1

     

    Steinberger B, Calderwood A R. 2006. Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations. Geophysical Journal International, 167(3):1461-1481. doi: 10.1111/gji.2006.167.issue-3

     

    Sun C Q, Chen Y, Gao E G. 2011. The crustal anisotropy and its geodynamical significance of the strong basin-range interaction zone beneath the east margin of Qinghai-Tibet plateau. Chinese Journal of Geophysics (in Chinese), 54(5):1205-1214, doi:10.3969/j.issn.0001-5733.2011.05.009.

     

    Sun C Q, Lei J S, Li C, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications. Chinese Journal of Geophysics (in Chinese), 56(12):4095-4105, doi:10.6038/cjg20131214.

     

    Sun Y, Niu F L, Liu H F, et al. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth and Planetary Science Letters, 349-350:186-197. doi: 10.1016/j.epsl.2012.07.007

     

    Tai L X, Gao Y, Liu G, et al. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data:shear-wave splitting from temporary observations of the first phase. Chinese Journal of Geophysics (in Chinese), 58(11):4079-4091, doi:10.6038/cjg20151116.

     

    Tan E, Choi E, Thoutireddy P, et al. 2006. GeoFramework:Coupling multiple models of mantle convection within a computational framework. Geochemistry Geophysics Geosystems, 7(6):Q06001, doi:10.1029/2005GC001155.

     

    Usui T, Hiramatsu Y, Furumoto M, et al. 2005. Thick and anisotropic D″ layer beneath Antarctic Ocean. Geophysical Research Letters, 32(13):L13311, doi:10.1029/2005GL022622.

     

    Wang C Y, Flesch L M, Chang L J, et al. 2013. Evidence of active mantle flow beneath South China. Geophysical Research Letters, 40(19):5137-5141. doi: 10.1002/grl.50987

     

    Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5):363-366. doi: 10.1130/G24450A.1

     

    Wang Q. 2016. Homologous temperature of olivine:Implications for creep of the upper mantle and fabric transitions in olivine. Science China Earth Sciences, 59(6):1138-1156. doi: 10.1007/s11430-016-5310-z

     

    Wang Q, Gao Y, Shi Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise. Chinese Journal of Geophysics (in Chinese), 58(11):4068-4078, doi:10.6038/cjg20151115.

     

    Wang Q, Ji S C, Xu Z Q. 2007. Lattice-preferred orientation, water content and seismic anisotropy of olivine:Implications for deformation environment of continental subduction zones. Acta Petrologica Sinica (in Chinese), 23(12):3065-3077. http://www.oalib.com/paper/1472070

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1):167-179. doi: 10.1093/gji/ggv420

     

    Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542):574-577. doi: 10.1126/science.1063647

     

    Wei W, Zhao D P, Xu J D, et al. 2016. Depth variations of P-wave azimuthal anisotropy beneath Mainland China. Scientific Reports, 6:29614, doi:10.1038/srep29614.

     

    Wenk H R, Cottaar S, Tomé C N, et al. 2011. Deformation in the lowermost mantle:From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 306(1-2):33-45. doi: 10.1016/j.epsl.2011.03.021

     

    Wu P P. 2013. Submmitted to the institute of geophysics of china earthquake administration for the degree of master science[Master's thesis] (in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration.

     

    Xu L, Rondenay S, Van Der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of Earth and Planetary Interiors, 165(3-4):176-193, doi:10.1016/j.pepi.2007.09.002.

     

    Ye Z R, Bai W M, Teng C K. 1993. The numerical modeling of mantle convection and its relationship to surface observations. Acta Geophysica Sinica (in Chinese), 36(1):27-36.

     

    Ye Z R, Teng C K, Zhang X W. 1995. Coupling between mantle circulation and lithospheric plates-(Ⅰ) Thermal free convection in a spherical shell. Acta Geophysica Sinica (in Chinese), 38(2):174-181. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX502.004.htm

     

    Yi G X, Yao H J, Zhu J S, et al. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy. Chinese Journal of Geophysics (in Chinese), 53(2):256-268. http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201002005.htm

     

    Zhang P Z, Wang Q, Ma Z J. 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet plateau. Earth Science Frontiers (China University of Geosciences, Beijing) (in Chinese), 9(2):442-450. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200202035.htm

     

    Zhang S Q, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534):774-777. doi: 10.1038/375774a0

     

    Zhang Y J, Gao Y, Shi Y T, et al. 2008. A study on S wave splitting using waveform data from Sichuan Regional Seismic Network. Acta Seismologica Sinica (in Chinese), 30(2):123-134. https://www.researchgate.net/publication/287756140_A_study_on_S...

     

    Zhong S J, McNamara A, Tan E, et al. 2008. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10):Q10017, doi:10.1029/2008GC002048.

     

    Zhong S J, Zuber M T, Moresi L N, et al. 2000. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research:Solid Earth, 105(B5):11063-11082. doi: 10.1029/2000JB900003

     

    Zhu S B, Cai Y E, Shi Y L. 2005. Computation of the present-day strain rate field of the Qinghai-Tibetan plateau and its geodynamic implications. Chinese Journal of Geophysics (in Chinese), 48(5):1053-1061. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200505010.htm

     

    Zhu T. 2016. Lithospheric stress and uppermantle dynamics in mainland China due to mantle flow based on combination of global-and regional-scale seismic tomography. Journal of Asian Earth Sciences, 132:103-117. doi: 10.1016/j.jseaes.2016.10.004

     

    安美建, 石耀霖. 2006.中国大陆岩石圈厚度分布研究.地学前缘, 13(3):23-30. http://www.docin.com/p-690879899.html

     

    包茨, 杨先杰, 李登湘. 1985.四川盆地地质构造特征及天然气远景预测.天然气工业, 5(4):1-11. http://www.trqgy.cn/CN/Y1985/V5/I4/1

     

    常利军, 丁志峰, 王椿镛. 2015.南北构造带南段上地幔各向异性特征.地球物理学报, 58(11):4052-4067, doi:10.6038/cjg20151114. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11979.shtml

     

    常利军, 王椿镛, 丁志峰. 2006.云南地区SKS波分裂研究.地球物理学报, 49(1):197-204. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract242.shtml

     

    傅容珊, 黄建华. 1993.利用多种地球物理观测资料直接反演地幔对流模型.地球物理学报, 36(3):297-307. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract4369.shtml

     

    高原, 石玉涛, 梁维等. 2008.剪切波分裂系统分析方法SAM(2007)-软件系统.中国地震, 24(4):345-353. http://d.wanfangdata.com.cn/Periodical_zgdz200804004.aspx

     

    石玉涛. 2014. 南北地震带南段地震各向异性与介质各向异性特征数值模拟初步研究[博士论文]. 北京: 中国地震局地球物理研究所, 72-73.http://cdmd.cnki.com.cn/Article/CDMD-85401-1014405989.htm

     

    石玉涛, 高原, 张永久等. 2013.松潘-甘孜地块东部、川滇地块北部与四川盆地西部的地壳剪切波分裂.地球物理学报, 56(2):481-494, doi:10.6038/cjg20130212. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9294.shtml

     

    孙长青, 陈赟, 高尔根. 2011.青藏高原东缘强烈盆山相互作用区的地壳各向异性特征及其动力学意义探讨.地球物理学报, 54(5):1205-1214, doi:10.3969/j.issn.0001-5733.2011.05.009. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract7953.shtml

     

    孙长青, 雷建设, 李聪等. 2013.云南地区地壳各向异性及其动力学意义.地球物理学报, 56(12):4095-4105, doi:10.6038/cjg20131214. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract10000.shtml

     

    太龄雪, 高原, 刘庚等. 2015.利用中国地震科学台阵研究青藏高原东南缘地壳各向异性:第一期观测资料的剪切波分裂特征.地球物理学报, 58(11):4079-4091, doi:10.6038/cjg20151116. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11981.shtml

     

    王勤. 2016.橄榄石的同系温度T/Tm:对上地幔蠕变与橄榄石组构转变的启示.中国科学:地球科学, 46(5):618-638. http://engine.scichina.com/publisher/scp/journal/SSTe/46/5/10...

     

    王勤, 嵇少丞, 许志琴. 2007.橄榄石的晶格优选定向、含水量与地震波各向异性:对大陆俯冲带变形环境的约束.岩石学报, 23(12):3065-3077. doi: 10.3969/j.issn.1000-0569.2007.12.003

     

    王琼, 高原, 石玉涛. 2015.青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究.地球物理学报, 58(11):4068-4078, doi:10.6038/cjg20151115. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11980.shtml

     

    吴萍萍. 2013. 大别-苏鲁及邻区上地幔各向异性和背景噪声层析成像研究[硕士论文]. 北京: 中国地震局地球物理研究所.http://cdmd.cnki.com.cn/Article/CDMD-85401-1013341983.htm

     

    叶正仁, 白武明, 滕春凯. 1993.地幔对流的数值模拟及其与表面观测的关系.地球物理学报, 36(1):27-36. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract4362.shtml

     

    叶正仁, 滕春凯, 张新武. 1995.地幔对流与岩石层板块的相互耦合及影响-(Ⅰ)球腔中的自由热对流.地球物理学报, 38(2):174-181. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract4171.shtml

     

    易桂喜, 姚华建, 朱介寿等. 2010.用Rayleigh面波方位各向异性研究中国大陆岩石圈变形特征.地球物理学报, 53(2):256-268. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract1160.shtml

     

    张培震, 王琪, 马宗晋. 2002.青藏高原现今构造变形特征与GPS速度场.地学前缘, 9(2):442-450. http://www.cqvip.com/QK/98600X/2002002/6155179.html

     

    张永久, 高原, 石玉涛等. 2008.四川区域地震台网的剪切波分裂研究.地震学报, 30(2):123-134. http://d.wanfangdata.com.cn/Periodical_dizhen200802003.aspx

     

    朱守彪, 蔡永恩, 石耀霖. 2005.青藏高原即邻区现今地应变率场的计算及其结果的地球动力学意义.地球物理学报, 48(5):1053-1061. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract14426.shtml

  • 加载中

(6)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-03-08
修回日期:  2018-01-22
上线日期:  2018-03-05

目录