
中国市级人口增长的多因素空间建模分析
Spatially Modeling of Multiple Factors for City-level Population Growth in China
本文以中国市域单元为研究对象,利用1990-2010年人口普查数据,采用探索性空间数据分析的方法,分析了过去20 年间中国市级人口增长率的空间分布特征和多变量的空间依赖关系。使用空间计量模型和空间滤波后的经典线性回归模型分别探究了经济、气候、地形、社会文化等因素对中国市级人口增长率的影响。模型对比结果显示,经过空间滤波后的经典线性回归模型能够更好的模拟中国市级人口增长率的变化。在该模型中,经济因素是影响中国城市人口增长率的主要因素,例如代表城市经济发展水平的城市夜光指数密度。气候因素对人口增长率也有着不可忽视的作用,如七月热指数随着等级的提升对人口增长率有着越来越强的负向影响。研究结果表明:人口的区域增长模式是多要素综合作用的结果,在相关建模研究和政策制定中需要重点考虑经济发展水平和气候条件因素对人口增长趋势的不同影响。
This paper is aimed at exploring the determinants of population growth in Chinese urban areas. With the method of exploratory spatial data analysis and the data of traditional population census between 1990 and 2010, we could delve into the spatial distribution characteristics of the population growth rate and the multivariable spatial dependency during the past twenty years in Chinese city-level. Based on a thorough interpretation of population data, we are able to discover an existing spatial dependency between different cities. Obviously, spatial relations should not be negligible, because the spatial dependency is much stronger within cities living in shorter distance. It is more reasonable to use spatial regression model for our work, therefore, we use spatial lag regression model, spatial error model and classical linear regression model with spatial filtering to explore the influences of economic factors, climate factors, sociocultural factors and topography factors on population growth rate. It is showed that the classical linear regression model with spatial filtering can simulate the urban population growth rate batter than other models in our outcomes. The findings also suggest that economy is the most pivotal factors in population growth, such as the total amount of economy reflected by density of urban nightlight index plays an important role in driving population growth. Meanwhile other factors are following as well. Climatic variation is another systematic and significant factor affecting the rates of urban population growth. Some weather-related movement appears. People are willing to leave the unpleasant places and move to the places with nice weather. For example, with the increase of July heat index, there is a more and more stronger negative impact on population growth. The research shows that Chinese population growth is a complex question. There is a comprehensive action of multi-factor in generating the model of regional population growth. It is necessary to consider the different effects of economic development and climate conditions on the population growth in the researches on corresponding modeling and formulation of policy.
人口增长 / 影响因素 / 探索性空间数据分析 / 空间自回归 / 空间滤波 {{custom_keyword}} /
population growth / influence factors / exploratory spatial data analysis / spatial regression / spatial filtering {{custom_keyword}} /
图1 1990-2010年中国市级人口增长率分布图 |
表1 Global Moran's I 统计结果表Tab. 1 Statistics of Global Moran's I |
统计量 | 值 |
---|---|
Moran I statistic | 0.338 |
E(I) | -0.003 |
Var(I) | 0.001 |
Z(I) | 10.850 |
P-value | 0.000 |
表2 变量说明表Tab. 2 Definitions of the variables |
变量名 | 含义 | 计算方法 |
---|---|---|
NLDens | 城市夜光密度 | 城市夜光指数之和除以城市面积 |
NLGrow | 城市夜光指数的增长趋势 | 计算城市20年夜光指数的变化趋势 |
RLSum | 城市道路总里程 | 城市铺装道路总长度 |
SIRGR | 城市第二产业区位熵 | 城市第二产业从业人数百分比/城市从业人数占全国从业人数的百分比 |
TIRGR | 城市第三产业区位熵 | 城市第三产业从业人数百分比/城市从业人数占全国从业人数的百分比 |
APMean | 年降雨量 | 年平均降水量小于400 mm时值为1,否则值为0 |
JTMean | 城市一月平均气温 | 1月日平均气温的算数平均值 |
HI | 7月热指数 | 根据城市7月平均气温(T)和7月相对湿度(H)计算得出 |
APArea | 少数民族自治区域 | 少数民族自治区域值为1,否则值为0 |
Patent | 专利申请量 | 无 |
UENum | 大学招生数量 | 无 |
CoastC | 城市是否临海 | 临海值为1,否则值为0 |
表3 经典线性回归模型(OLS)统计表Tab. 3 Statistics of OLS model |
解释变量 | 模型 | |
---|---|---|
全模型 | 简化模型 | |
NLDens | 0.529*** | 0.543*** |
NLGrow | -0.106* | -0.107* |
RLSum | 0.231‴ | 0.216‴ |
SIRGRs | -0.026 | - |
TIRGR | 0.209*** | 0.202*** |
APMean | 0.468** | 0.449** |
JTMean | 0.270*** | 0.274*** |
HIb | -0.106 | -0.105 |
HIc | -0.545** | -0.535** |
HId | -0.587** | -0.587*** |
APArea | 0.280* | 0.277* |
Patent | -0.182** | -0.179*** |
UENum | 0.167 | - |
CoastC | 0.074 | - |
F-statistic | 28.120*** | 36.01*** |
AIC | 736.506 | 731.092 |
注:“‴”表示在0.1水平显著;“*”表示在0.05水平显著;“**”表示在0.01水平显著;“***”表示在0.001水平显著 |
表4 空间回归模型统计表Tab. 4 Statistics of spatial regression |
解释变量 | 空间统计模型 | ||
---|---|---|---|
LAG模型 | SEM模型 | SFOLS模型 | |
NLDens | 0.479*** | 0.645*** | 0.543*** |
NLGrow | -0.092* | -0.098* | -0.107** |
RLSum | 0.161 | 0.037 | 0.216‴ |
TIRGR | 0.219*** | 0.264*** | 0.202*** |
APMean | 0.304* | 0.368* | 0.449*** |
JTMean | 0.237*** | 0.326*** | 0.274*** |
HIb | -0.090 | -0.092 | -0.105 |
HIc | -0.439** | -0.511** | -0.535*** |
HId | -0.488** | -0.572** | -0.587*** |
APArea | 0.226* | 0.232‴ | 0.277** |
Patent | -0.178*** | -0.166** | -0.180*** |
RHO | 0.299 | - | - |
LAMBDA | - | 0.318 | - |
LR test | 20.385*** | 13.329*** | - |
ASE | 0.061*** | 0.073*** | - |
Wald statistic | 24.397*** | 19.165*** | - |
Log likelihood | -342.353 | -345.882 | -319.109 |
ML residual variance | 0.421 | 0.428 | - |
LM test | 12.001(0.000) | - | - |
SSR | 144.746 | 147.376 | 128.773 |
AIC | 712.710 | 719.760 | 678.218 |
注:“‴”表示在0.1水平显著;“*”表示在0.05水平显著;“**”表示在0.01水平显著;“***”表示在0.001水平显著 |
图2 3种模型对344个城市的人口增长率模拟结果比较Fig.2 Comparisons of modelled results of growth rate of human population from three models across 344 cities |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
国家统计局人口和就业统计司.中国2010人口普查分县资料[M].北京:中国统计出版社,2012.
[ The National Bureau of Statistics of Population and
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
The authors have declared that no competing interests exist.
文章所在专题
/
〈 |
|
〉 |