青藏高原冰川变化遥感监测研究综述

叶庆华, 程维明, 赵永利, 宗继彪, 赵瑞

地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (7) : 920-930.

PDF(2871 KB)
PDF(2871 KB)
地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (7) : 920-930.
遥感科学与应用技术

青藏高原冰川变化遥感监测研究综述

作者信息 +

A Review on the Research of Glacier Changes on the Tibetan Plateau by Remote Sensing Technologies

Author information +
文章历史 +

摘要

在全球变暖影响下,青藏高原冰川消融造成的冰川径流增大、冰湖溃决等问题威胁着山区及其周边居民的生命财产安全,对青藏高原冰川变化的研究日益紧迫。本文综述了国内外山地冰川变化遥感监测手段的发展、冰川面积及冰面高程变化的遥感监测研究现状、存在问题与发展趋势,并总结了中国青藏高原冰川变化遥感监测研究的主要成果。此外,本文基于2003-2009年ICESat/GLAS数据,计算了青藏高原各山区冰面高程变化及其冰川消融量。结果显示:青藏高原冰川面积持续减少,青藏高原冰面高程的平均变化为-0.24±0.03 m/a,冰川融水量为-14.86±11.88 km3/a,冰川变化呈现从青藏高原东、南外缘山区往内陆与西、北部山区减慢的时空特征。

Abstract

It is well known that glaciers in mountains are retreating widely in a warmer climate during recent decades on the Tibetan Plateau (TP). The runoffs from both glaciers and glacier lakes have been increased significantly, and the potential outbursts of glacier lakes have threaten the residence safety in China and the adjacent countries. However, most of the glaciers locate in very distant mountains. As glaciers are difficult to be investigated due to the huge investments and long travelling time of field survey, remote sensing monitoring has been the major approach adopted to understand the changes of glaciers nowadays. This paper has summarized several important items about current glacier studies, which includes: the development of remote sensing techniques on mountain glacier monitoring; the previous concluded results on glacier surface elevation changes in the major mountains on TP; and the problems and research trends of glacier studies based on the remote sensing techniques. Moreover, this paper reveals the glacier surface elevation changes on TP based on the ICESat/GLAS data. It shows that during 2003-2009 the glacier surface elevation on TP has changed by -0.24±0.03 m/a in average and yielding a mass change by -14.86±11.88 km3/a, whose melting water would run into rivers or lakes. The glacier change pattern on TP shows an obviously spatial-temporal heterogeneity, which decreases from the south and east TP toward the inland TP, and then it keeps decreasing toward the north and west TP.

关键词

冰川 / 遥感 / 综述 / 青藏高原 / 多学科综合与集成

Key words

glacier / remote sensing / review / Tibetan Plateau / Integrated research by multi-disciplines

引用本文

导出引用
叶庆华, 程维明, 赵永利, 宗继彪, 赵瑞. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报, 2016, 18(7): 920-930
YE Qinghua, CHENG Weiming, ZHAO Yongli, ZONG Jibiao, ZHAO Rui. A Review on the Research of Glacier Changes on the Tibetan Plateau by Remote Sensing Technologies[J]. Journal of Geo-information Science, 2016, 18(7): 920-930

1 引言

山地冰川,尤其是那些处于温带的冰川,被认为是气候变化的最佳天然指示器之一[1]。近年来,冰川对湖泊与海平面上升的贡献也日益受到关注,全球冰川消融海平面上升贡献率为29±13%,全球冰川和冰盖的消融海平面上升贡献率占61±19%[2]青藏高原及其相邻山区发育了面积约5万km2的冰川,拥有极地外中低纬度区面积最大的冰川,是亚洲许多著名江河的发源地,也是内陆干旱区宝贵的水资源[3]。冰川活动是诱发冰川泥石流、冰崩/雪崩、冰湖溃决等灾害的重要因素,通常冰川洪水是具有最大和最广泛影响的冰川灾害之一[4]。例如,冰川消融造成冰碛湖的形成和扩展,由冰碛或冰坝湖引发的冰川洪水灾害频繁发生,在青藏高原喜马拉雅山脉地区,山地冰川活动及冰湖溃决给中国及周边国家(如印度和尼泊尔山区)的人们生命财产安全带来灾难性威胁[5]。因此,随着全球变化研究的深入,对冰川变化(包括面积、厚度、冰储量等)的研究越来越重要[6],它在全球水资源气候变化、灾害预警等方面都具有重大意义[7]

2 冰川变化遥感监测手段的发展

在1930s以前,冰川末端的变化研究一直依靠实地对冰川末端若干固定点进行定期测量、制图以及计算冰川长度的变化,测量精度一般在几米以内[8]。由于冰川实测耗资巨大且异常艰辛,截止到1984年,全球只有25条冰川进行了50年左右的实地连续观测[9]。1940s以后,人们可借于航空摄影技术与过去实地测量的控制点处理航片,并测绘冰川末端位置[10]
在过去的几十年里,遥感技术克服了以往野外考察范围和实测数据局限性,大大缩短了考察周期、节省了考察经费,提高了考察效率。数字遥感图像可以在没有地面观测数据情况下,通过2期以上数字遥感图像的配准较准确地量算冰川末端与面积变化。世界上最早利用民用卫星监测冰盖始于1964年[11],用Nimbus卫星影像来观测南极冰山。到1970s,随着1972年陆地资源卫星MSS(Multispectral Scanner)的发射,使人们能更广泛地从太空观测冰川[12],此后陆地资源卫星系列(包括TM(Thematic Mapper),ETM+(Enhanced Thematic Mapper Plus),以及2013年2月发射的Landsat8 OLI(Operational Land Imager),已成为国内外观测冰川变化的主要光学遥感数据源之一[13]2000年以来,随着遥感技术的发展,冰川遥感数据日益丰富(表1)。由于光学传感器所获得的数据受冰面上云、雨、雾的影响限制了它的应用,而微波遥感可全天候、全天时地获取地面数据,特别是星基微波雷达观测,能够发挥光学遥感所不能比及的作用[14]
表1 冰川面积遥感监测常用星载遥感数据列表

Tab.1 List of satellites/sensors used for glacier area monitoring

卫星/传感器 重访周期/d 空间分辨率/m 发射时间
Landsat 1-5/Multispectral Scanner (MSS ) 18 80 1972-07/1975-01/1978-03/
1982-07/1984-03
Landsat 4-5/Thermal Infrared Sensor (TM) 16 30 1982-07/1984-03
Landsat 7/Enhanced Thermatic Mapper Plus (ETM+) 16 30(全色15) 1999-04
Landsat 8/Operational Land Imager (OLI) 16 30(全色15) 2013-02
SPOT 1-4/High Resolution Visible (HRV) 26 20 1986-02/1990-01/1993-09
SPOT 5/High Resolution Geometrical (HRG) 5 10 2002-05
SPOT 6-7/New AstroSat Optical Modular Instrument (NAOMI) 26 6(全色1.5) 2012-09/2014-06
CBERS01,02,02B/ChargeCoupled Device (CCD) 26 19.5 1999-10
QuickBird 1-6 2.44 2001-10
IKONOS/Visible Sensors 3 4(全色1) 1999-09
Terra/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 16 15 1999-12
IRS P5/Cartosat 1 5 2.2 2005-05
IRS P6/Resourcesat-1 5 5.8 2003-10
Formosat-2 4-5 8 2004-05
ALOS/Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) 2 10 2006-01
HJ-1A/B/CCD 4 30 2008-09
GF-1/CCD 4(侧摆) 8(全色2) 2013-04
GF-2/CCD 5(侧摆) 4(全色1) 2014-08
可见,自1960s以来,卫星遥感技术革新了冰川研究领域,成为目前全球尺度冰川持续观测的主要技术手段[15]。在过去50年,卫星遥感技术冰冻圈观测中取得了很大进展[16]。虽然很多分类方法可以比较准确地从多光谱影像中自动提取净冰川(Clean glacier),如最大似然分类法、波段比值法TM4/TM5(ASTER 3/ASTER 4)、TM3/TM5比值)等,但由于相当多的山谷冰川被不同类型的表碛所覆盖,以及冰川边缘积雪、山体阴影等问题,使冰川边界难以被准确地自动识别。而且,由于缺乏地面冰川实测数据检验[17],以及多源数据分类结果之间存在的“变化噪声”等问题[18],在冰川及其变化的自动测图方面至今还存在诸多挑战[19]。虽然基于多光谱卫星遥感影像,可以简便快捷地得到冰川二维信息(如冰川条数、范围、面积、形态)及许多冰川特征界限(如雪线、冰舌末端)等参数,却无法获知与高程有关的三维参数[20]冰面高程变化测量是目前冰川遥感监测中的主要缺口[21]

3 冰川储量变化的遥感监测研究

冰面高程数据是冰储量变化研究的基础数据,目前主要来源于实地观测、历史地形图、遥感监测3种方式。实地立体摄影测量[10,22]、差分GPS/DGPS(Differential Global Positioning System[23]探地雷达测量[24],可直接获取观测点冰面高程数据,一般用于小范围大比例尺(如比例尺大于1:2000)观测。实地测量获取数据的方法精度高,可靠性强,但野外工作量及其耗资巨大,仅限于局部或小范围监测。1940s以来的航空摄影测量[25],是测绘历史地形图和早期数字高程模型DEM(Digital Elevation Model)的主要数据源,是目前冰面高程变化研究的前期主要基准数据之一。冰面高程变化研究常用卫星/航空测高数据如表2所示。
表2 冰面高程变化研究常用卫星/航空测高数据

Tab.2 List of satellites/sensors used for glacier surface elevation change studies

卫星/传感器 发射时间 测高技术 空间分辨率/m 国家
航空摄影测量 1940s以来 光学立体像对 - 各国
Corona/KH-4 (Key Hole-4) 1959-06 光学立体像对 1.83 美国
Hexagon KH-9 1971-06 光学立体像对 6 美国
Terra/ASTER 1999-12-18 光学立体像对 15 日本
SRTM-C 2000-02-11 InSAR,C波段 30 美国
SRTM-X 2000-02-11 InSAR,X波段 25 德国
SPOT5/HRS 2002-05-03 光学立体像对 2.5 法国
ICESat/GLAS (Ice, cloud, and land elevation satellite)/Geoscience Laser Altimeter System) 2003-01-13 激光雷达测高 65 美国
ALOS/PRISM (Panchromatic Remote-sensing Instruments for Stereo Mapping) 2006-01-24 光学立体像对 2.5 日本
TerraSAR-X/TanDEM-X 2007-06-15/
2010-06-21
InSAR,X波段 3 德国
CryoSat-2/SIRAL (SAR Interferometer Radar Altimeter) 2010-04-08 合成孔径雷达测高 250 欧空局
ZY-3 (资源三号) 2012-01-09 光学立体像对 2.1 中国
1960s以来星基光学立体像对2000年以来的雷达测高数据等已被广泛应用到冰面高程变化观测中[26],近两年高精度的雷达差分干涉测量也开始应用到冰量变化研究中。1960-1972年美国Corona携带的KH-4(Key Hole-4)相机获得的高分辨率立体像对(<8 m)也被用于冰川区DEM的合成,但复杂地形增大了数据处理难度和高程误差[27]。2000年2月,美国奋进号航天飞机携带C/X波段雷达进行了为期11 d覆盖全球80%地区的制图任务飞行SRTM(Shuttle Radar Topography Mission),且使用单轨双天线模式,运用干涉方法获取了覆盖全球80%地区的DEM,目前在冰面高程变化研究中应用广泛,但SRTM DEM在复杂山区出现的偏差也不容忽视[28]。此外,ASTER GDEM(Global Digital Elevation Model)也为冰面高程变化研究提供了DEM参考数据,但ASTER GDEM是由2001-2011年的数据拼接而成,没有准确日期,而其高程偏差比SRTM DEM大,限制了它的有效应用[29]
ICESat卫星(The NASA Ice, Cloud, and land Elevation Satellite)搭载的激光测高系统GLAS(Geoscience Laser Altimeter System)在2003-2009年获取了全球大部分地区地表高程数据[30],其测点精度可达米级甚至10 cm量级[31],被广泛应用于湖泊水位变化和冰面高程变化研究[21,32],并在研究陆地冰储量变化中发挥了重要作用,但ICEsat数据限于卫星轨迹观测点分布,大量小冰川没有测点分布,不适合小冰川研究[33]
相比之下,光学立体像对方法具有覆盖范围大、分辨率较高、数据源广泛等优点,但受制于云、雪影响。星基或空基光学立体像对,包括早期的航空像片,星基光学立体像对(如SPOT5/HRS(High Resolution Stereoscopic)[34]、ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)[35]ALOS/PRISM(Panchromatic Remote-sensing Instruments for Stereo Mapping)[36]等),常用于生成DEM,可结合高度计、历史地形图、实测GPS点等不同时期测量的地表高程数据,估算冰面高程/冰储量变化[37]
雷达干涉测量(Synthetic Aperture Radar lnterferometry)是1990 s以来应用于冰川变形、冰流速度、地形测量微波遥感新技术[38],利用相位差来提取地面目标的三维信息,是研究冰川、冰原的重要工具[39],如2000年以来欧洲空间局的ERS-1,ERS-2、日本的JERS-1与ALOS/PALSAR(Phased Array type L-band Synthetic Aperture Radar)和加拿大的RADARSAT-1等[40]。近年来,星载双站雷达差分干涉技术,通过两副天线同时观测(单轨双天线模式),基于同一目标对应的2个回波信号之间的相位差并结合轨道数据来提取高精度、高分辨率的冰川冰面高程变化,如德国DLR的TerraSAR-X与TanDEM-X卫星双站模式,在获取地表形变研究方面表现出独到优势,已开始应用于冰面高程变化研究[41]
2002年3月发射的重力卫星GRACE(The Gravity Recovery and Climate Experiment)由美国国家航空航天局(National Aeronautics and Space Administration,NASA)和德国宇航中心(Deutsches Zentrum für Luft-und Raumfahrt,DLR)合作研制,为陆地水储量、冰储量变化提供了新的监测手段,在极地与山地冰川研究中得到广泛应用[42]。但GRACE卫星数据受空间分辨率限制,仅适用于全球、大陆或大区域尺度的总质量变化研究,在单独用于揭示山地冰川变化量时存在争议较大[2]

4 中国青藏高原冰川变化的遥感监测研究

中国对于全新世山地冰川变化的研究始于20世纪五、六十年代[43],区域冰川变化数据多采用大范围野外调查、重复航空摄影测量技术以及80年代以来的遥感技术等方法获得[44]。60年代中期以后,随着研究的深入和野外考察区域的不断扩大,取得了很多研究成果[45]。到目前为止,实测的冰川物质平衡冰面高程变化记录仍然较少[46],如扎当冰川[47]、小冬克玛底[6]、帕隆12号及94号冰川[46]、七一冰川[48]、抗物热冰川[6]、纳木那尼冰川[24]。野外考察的耗时耗力和高成本极大地限制了青藏高原地面冰川变化实测研究的广泛开展。
60年代,通过利用摄影经纬仪安置在地面固定的测站上,在冰川上摄取立体像对,然后利用立体测量制图的仪器进行量测和勾绘等高线,采用“地形图比较法”绘制冰川变化图,并采用重复地面立体摄影测量方法测定冰川的变化[10]。80年代初,中国开始利用陆地卫星像片,采用放大镜、直尺和方格模片,统计了区域冰川面积,比较冰川变化,并分析误差[49]。进入90年代以来,中国的冰川变化研究有了较大的发展,开始采用多光谱数字遥感影像,如Landsat MSS、TM、ETM+[50-52]微波遥感[53]等。
中国第1期冰川编目是基于2000多幅1:50 000或1:100 000航测地形图,先后利用1950s-1970s的航片342 000张,1980s-1990s Landsat MSS影像200多景,并组织了9次野外考察、搜集了20多次野外考察资料,历时20多年完成[54]。目前,中国已在第1期冰川编目基础上,发布了第2期冰川编目[55-56],主要基于2004-2011年Landsat TM/ETM+影像[56],在云雪影响严重的西藏东南部地区采用了部分第1期冰川编目数据(占15%左右)。这些工作为系统了解中国冰川资源分布及其变化奠定了基础。
2000年前后,青藏高原冰川变化研究主要集中在冰川面积、长度变化监测[57]。研究者利用卫星遥感数据冰川面积变化进行了大量研究,如祁连山西段[50,58]祁连山东段冷龙岭地区[59]、天山地区[60],长江源各拉丹冬[61]、普若岗日冰原[62]喜马拉雅山脉西段纳木那尼峰地区[52]、珠峰北坡[63]希夏邦马峰地区[48]以及朋曲流域[64]等地区。青藏高原冰川变化区域差异很大,各地域冰川面积变化已经有学者做了全面总结[65],显示青藏高原冰川面积在迅速减少,东南边缘山区冰川消融最快,从东南边缘到高原内陆冰川退缩速率减小[3]
近几年,基于卫星遥感技术监测高亚洲地区(包括青藏高原喜马拉雅山脉地区)冰面高程变化冰川储量冰川物质平衡变化开展了大量工作,有不少论文在NATURE[66-67]、SCIENCE[2,68]、PNAS(Proceedings of the National Academy of Sciences)[69]等刊物上发表,受到国内外广泛关注。目前,很多研究工作聚焦在喜马拉雅山脉地区[66,68,70],青藏高原边缘与内陆冰川消融变化及其时空差异也日益被重视[71]。这些研究大部分基于2003-2009年ICESat/GLAS落在冰川区足迹点,基于2010年以来雷达差分干涉测量获取冰面高程变化的工作也已开展[42],但只有少数地区冰川的遥感监测研究是长时段的、基于早期光学立体像对生成的DEM,如慕士塔格冰川[72]、天山一号冰川[38]喜马拉雅山脉柯西河流域[73]、珠峰北坡绒布流域1974-2006[74]。自从2013年以来,随着中国科技部科技基础性工作专项项目“中国西部主要冰川作用中心冰量变化调查”启动,青藏高原冰川储量变化调研工作已经全面展开。
本文基于青藏高原2003-2009年ICESat/GLA06数据(Release 33),将ICESat数据的Topex/Poseidon椭球体和EGM2008大地水准面,转换为SRTM DEM所用的WGS84[75],采用Gardner等的方法所得数据[2],运用DEM投影方法[76],将5 km范围内ICESat/GLA06不同年份邻近轨迹点所在位置的SRTM DEM高程值减掉,即去除因邻近轨迹所在椭球体位置差异而造成的表面高程差,并选择那些过境时间季节相同、不少于2年的邻近轨迹点,用于计算表面高程变化(dh)。本文采用第二次冰川编目中各山系冰川分布范围[55],计算了各山系2003-2009年ICESat/GLAS不同年份邻近轨迹点之间年平均冰面高程变化(dh/dt)。根据目前人们广泛采用的冰密度850±60 kg m-3[77],计算冰川消融量(图1)。根据离冰川区1~5 km距离范围内非冰川区的轨迹点,计算高程变化误差,青藏高原范围内总体平均误差为±0.26 m,各山系有所不同(图1)。
图1 青藏高原2003-2009年各山系冰川变化

Fig.1 Glacier changes in the major mountains on the Tibetan Plateau from 2003 to 2009

Full size|PPT slide

研究结果显示,青藏高原2003-2009年冰面高程平均变化为-0.24±0.03 m/a,冰川融水量总计为 -14.86±11.88 km3/a。这接近于姚檀栋等2004年的研究结果,过去40年中国冰川储量减少了估计452.77~586.94 km3(8.1%~10.5%)[3],即平均为11.32~ 14.67 km3/a。从图1可知,青藏高原边缘喜马拉雅山脉地区冰川消融最快,从青藏高原东南缘往高原内陆消融减慢,而羌塘高原阿尔金山脉、昆仑山脉直到帕米尔高原东部,冰川变化几乎处于平衡状态、甚至是有所积累,与前人研究结果基本吻合。本文就目前为止刊发的青藏高原主要区域冰面高程变化的遥感监测研究成果进行了汇总与比较,如表3所示。
表3 青藏高原主要山系冰面高程变化研究结果列表

Tab.3 Results of glacier surface elevation changes in the major mountains on the Tibetan Plateau

区域/冰川名称 观测方法 时段 冰面高程变化/ (m/a) 数据来源
阿尔金山 ICEsat/GLAS 2003-2009 0.09±0.07 本研究
冈底斯山脉 ICEsat/GLAS、SRTM 2003-2009 -0.44±0.26 文献[71]
冈底斯山脉 ICEsat/GLAS 2003-2009 -0.31±0.09 本研究
喀喇昆仑山 ICEsat/GLAS 2003-2009 -0.10±0.06 文献[78],本研究
昆仑山 ICEsat/GLAS 2003-2009 0.06±0.04 本研究
念青唐古拉山脉西段 ICEsat/GLAS、SRTM 2000-2008 0.49±0.27 文献[79]
CryoSat-2、SRTM 2000-2013 -0.55±0.31 文献[79]
念青古仁河口冰川 差分GPS 2007-2011 -0.85 文献[24]
帕米尔高原 ICEsat/GLAS、SRTM DEMSPOT DEM 2000-2010 -0.16±0.15 文献[70]
祁连山羊龙河1号冰川 地形图GPS 1956-2007 -0.40±0.22 文献[80]
祁连山羊龙河5号冰川 地形图GPS 1956-2007 -0.33±0.22 文献[80]
祁连山老虎沟12号冰川 地形图GPS 1957-2007 -0.37±0.11 文献[81]
祁连山宁缠河3号冰川 地形图GPS 1972-2009 -0.25 文献[82]
祁连山 ICEsat/GLAS、SRTM 2000-2009 -0.35±0.26 文献[83]
羌塘高原 ICEsat/GLAS、SRTM 2003-2009 0.44±0.26 文献[71]
ICEsat/GLAS 2003-2009 0.25±0.17 本研究
唐古拉山脉 ICEsat/GLAS 2003-2009 -0.38±0.07 本研究
天山山脉 ICEsat/GLAS 2003-2009 -0.58±0.21 文献[2]
横断山 ICEsat/GLAS、SRTM DEMSPOT DEM 2000-2010 -0.39±0.16 文献[70]
ICEsat/GLAS 2003-2009 -0.41±0.28 本研究
藏东南(包括横断山脉和念青唐古拉山脉东南段) ICEsat/GLAS、SRTM 2003-2009 -1.34±0.29 文献[69]
喜马拉雅山脉东段与中段 ICEsat/GLAS 2003-2009 -0.78±0.27 文献[71]
喜马拉雅山脉东段 ICEsat/GLAS 2003--2009 -0.89±0.18 文献[2]
喜马拉雅山脉中段 ICEsat/GLAS 2003-2009 -0.44±0.20 文献[2]
喜马拉雅山脉西段 ICEsat/GLAS 2003-2009 -0.53±0.13 文献[2]
喜山中段珠峰绒布流域 ALOS/PRISM DEM, 1:5万DEM 1974-2006 -0.52±0.06 文献[74]
ALOS/PRISM DEMSRTM DEM 2000-2006 -0.85±0.30 文献[84]
喜山中段希夏邦马峰地区 SPOT DEMSRTM 2000-2007 -0.45±0.11 文献[85]
希夏邦马峰抗物热冰川 差分GPS 2007-2010 -0.85 文献[24]
差分GPS 2009-2010 -0.76 文献[24]
喜马拉雅山脉西段纳木那尼冰川 ICEsat/GLAS、SRTM 2000-2009 -0.63±0.32 文献[75]
DGPS实测 2008-2010 -0.67 文献[24]
DGPS实测 2008-2013 -0.42 文献[24]
DGPS实测 2009-2013 -0.58±0.06 文献[38]

5 冰川变化遥感监测存在的问题与 发展趋势

5.1 自动测图方法

冰冻圈研究中,面对日益膨胀的遥感数据资源以及日益强烈的冰川消融,冰川变化自动识别与测图方法研究也被提上日程。但冰川边缘积雪、山体阴影及各类表碛物覆盖等冰川识别问题,使冰川边界难以自动测图。目前,各种分类方法所得结果、人工修正工作量非常大,人工数字化方法依然被大量采用,因此在冰川及其变化的自动测图方面至今还存在诸多挑战。结合高精度DEM生成三维影像、基于地形特征进行冰川测图,有利于减少冰川识别的不确定性。发展适合不同尺度研究的冰川变化自动测图算法,是大规模山地冰川研究的方向之一。
冰面高程变化的自动测图方面,人们已经认识到目前可用的各类测高或高程数据的局限性,即在地形复杂、陡峭山区精度都会大大降低[86],难以准确量算冰面高程变化[21],高精度山地冰面高程数据的获取、DEM的合成及其误差检测与剔除成为迫切需要解决的关键问题。通过将误差大于一定范围的测点剔除[21],或基于误差分析进行DEM误差校正[87],以及寻找早期高程数据、延长时间尺度等都可提高所用数据的总体精度。

5.2 跨学科、多平台综合集成研究

集成研究是全球环境变化研究未来的工作重点[88],在方法上强调综合与集成[7]。多圈层、多过程、多平台、多技术手段的跨学科综合研究是冰冻圈遥感发展的趋势。多平台观测冰川变化的优势在于不同传感器提供了不同特征的观测,如光学遥感地物光谱特征微波遥感的全天候观测、激光雷达高度计较准确的地面测高、雷达差分干涉更准确的地表形变监测、重力卫星的质量变化观测等。综合利用这些有效观测,可以克服单一传感器在信息提取及反演中的许多局限,从冰川面积变化、长度变化、厚度变化、质量变化等方面全面了解冰川变化状况。但卫星观测仍需要与实测结合,包括传统冰川物质平衡、差分GPS、历史地形图探地雷达测厚等。多平台数据观测的交叉验证,是综合集成趋势之一。
此外,冰储量变化研究,还有不少基于模型模拟的工作在开展,如通过冰川面积、长度和体积之间的关系拟合、建立冰储量计算经验公式[50,89],或者根据度日因子、能量平衡、冰川动力学等特征,从机理上建立冰川消融模型[90]
因此,多平台遥感监测模型模拟、实测验证与预测的综合与集成研究冰川变化目前面临的最大挑战之一,需要填补知识上的不足,在全球定位系统(GPS)、地理信息系统(GIS)、虚拟地理环境(VGE)[91]等技术支持下,与不同专业领域、多学科交叉的专家通力合作,研究、预测不同尺度气候变化影响下的冰储量变化及其对水文循环过程、水资源海平面上升等方面的贡献与影响,是目前冰冻圈变化国际学术前沿研究热点之一。

参考文献

[1]
Pachauri R ., Meyer L A.IPCC, climate change 2014: synthesis report. contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva, Switzerland: IPCC, 2014:151.
[2]
Gardner A ., Moholdt ., Cogley J ., et al.A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013,340(6134):852-857.
[3]
姚檀栋,刘时银,蒲健辰,等.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑:地球科学),2004,34(6):535-543.近几十年来, 高亚洲冰川在气候变暖的影响下随着冰川物质平衡的持续亏损而不断退缩. 过去10 a是20世纪高亚洲冰川退缩最强烈的时期. 高亚洲冰川退缩的空间特征是: 青藏高原内陆地区退缩幅度最小; 从青藏高原内陆向边缘地区退缩幅度逐渐增大; 在最边缘的藏东南和喀喇昆仑, 冰川退缩幅度最大. 高亚洲冰川退缩对中国西北干旱地区水资源产生重大影响. 利用冰川变化的长度、面积、体积间的比例关系估算的结果和用经验公式估算的结果都说明, 从20世纪90年代开始的冰川退缩导致冰储量减小, 致使西北地区冰川径流量增加5.5%以上. 在冰川融水补给量大的塔里木河, 冰川径流增加量更大.
[ Yao T ., Liu S ., Pu J ., et al.High Asian recent glaciers recession and its influence of the water resources in northwest[J]. Science China (Earth Sciences), 2004,34(6):535-543. ]
[4]
沈永平,苏宏超,王国亚,等.新疆冰川、积雪对气候变化的响应(II):灾害效应[J].冰川冻土,2013,35(6):1355-1370.lt;p>新疆地区冰川、积雪广泛分布,在其融水补给河川径流的同时,也常伴有冰川洪水、融雪洪水、冰湖突发洪水、冰川泥石流、冰雪崩和风吹雪等冰雪灾害发生,这些灾害对当地居民居住地以及重要国防干线的安全运营形成较大威胁. 冰川、积雪变化直接影响到冰雪灾害发生的程度与影响范围,新疆的冰川洪水和冰湖突发洪水灾害主要发生在塔里木河流域的喀喇昆仑山、昆仑山以及天山南坡西部一带,融雪洪水灾害主要发生在新疆北部的阿勒泰地区、塔城地区和天山北坡一带,冰川泥石流、冰雪崩灾害主要发生在帕米尔高原、天山西段和西昆仑山地区,风吹雪主要在天山中、西段地区. 随着全球气候变暖,尤其是新疆从1987年开始的气候由暖干向暖湿的转型,冰川退缩加剧,融水量增大,冰川洪水和冰川泥石流灾害随着冰川融水径流的增加而增多;而融雪洪水、雪崩和风吹雪随着气候变化引起的冬季积雪增加和气温升高,其灾害强度在增强;冰崩灾害随着气温升高引起的高山冰体崩解而呈增加趋势. 在新疆地区,冰雪灾害主要表现为冰雪洪水,已观测到近十几年来在气候变化影响下冰雪洪水发生的频次和强度有增加的趋势,塔里木河流域的冰湖溃决洪水和冰川洪水及北疆春季的冰凌和融雪洪水已对当地的生命财产和社会经济发展带来巨大危害,新疆的水资源安全、灾害等问题日益凸显. 预计未来,随着气候增温引起的冰雪融水径流的增加,相关的冰雪灾害增多,因而增加了冰雪灾害的危险程度,并可能形成若干新的灾害点. 面对气候变化诱发的众多冰川、积雪灾害,目前还缺乏对灾害监测、预测预警方面的适应对策. 因此,在全球气候变化不断加速的趋势下,冰雪灾害应引起有关方面的足够重视,加强气候变化对冰雪灾害的影响评估和适应性管理对策研究,使科学技术在减灾方面发挥主导作用.</p>
[ Shen Y ., Su H ., Wang G ., et al.The responses of glaciers and snow cover to climate change in Xinjiang (II): hazards effect[J]. Journal of Glaciology and Geocryology, 2013,35(6):1355-1370. ]
[5]
陈晓清,崔鹏,杨忠,等.喜马拉雅山中段波曲流域冰湖溃决危险性分析与评估[J].冰川冻土,2007,29(4):509-516.西藏聂拉木县波曲流域内分布有大量的冰湖,对2000/2001年度卫星遥感数据遥感解译获取了冰湖的分布及面积;对比1987年的数据发现,经过15 a流域内冰湖数量和面积均发生了巨大的变化.通过野外考察获取了重要冰湖的溢流状态、冰碛堤稳定性、冰川影响等资料,在此基础上使用直接判别法和冰湖溃决危险性指数(I<sub>dl</sub>)进行了冰湖溃决危险性评价,所有冰湖中有9个处于高度危险状态的,3个处于较高危险的,2个处于稳定状态,其余35个处于相对稳定或趋于衰退状态.冲堆普下游、科亚普下游和主河至科亚普汇口以下为高度危险区,塔吉岭普下游、如甲普下游和章藏布下游处于较高危险,其他支沟下游及所有上游区处于冰湖溃决相对安全区.基于危险性评价结果,建议下游根据危险性大小,采取相应的应对措施以减轻冰湖溃决泥石流的危害.
[ Chen X ., Cui ., Yang ., et al.Risk assessment of glacial lake outburst in the Poiqu River Basin of Tibet autonomous region[J]. Journal of Glaciology and Geocryology, 2007,29(4):509-516. ]
[6]
Yao T ., Thompson ., Yang ., et al.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.The Tibetan Plateau and surroundings contain the largest number of glaciers outside the polar regions. These glaciers are at the headwaters of many prominent Asian rivers and are largely experiencing shrinkage, which affects the water discharge of large rivers such as the Indus. The resulting potential geohazards merit a comprehensive study of glacier status in the Tibetan Plateau and surroundings. Here we report on the glacier status over the past 30 years by investigating the glacial retreat of 82 glaciers, area reduction of 7,090 glaciers and mass-balance change of 15 glaciers. Systematic differences in glacier status are apparent from region to region, with the most intensive shrinkage in the Himalayas (excluding the Karakorum) characterized by the greatest reduction in glacial length and area and the most negative mass balance. The shrinkage generally decreases from the Himalayas to the continental interior and is the least in the eastern Pamir, characterized by the least glacial retreat, area reduction and positive mass balance. In addition to rising temperature, decreased precipitation in the Himalayas and increasing precipitation in the eastern Pamir accompanied by different atmospheric circulation patterns is probably driving these systematic differences.
[7]
陈宜瑜. 全球变化与社会可持续发展[J].地球科学进展,2003,18(1):1-3.
[ Chen Y Y.Global change and social sustainable development[J]. Advance in Earth Science, 2003,18(1):1-3. ]
[8]
Gilbert G K.Glaciers and glaciation-harriman Alaska expedition[M]. New York: Doubleday, Page and Company, 1903.
[9]
Meier M F.Contribution of small glaciers to global sea-level[J]. Science, 1984,226(4681):1418-1421.Observed long-term changes in glacier volume and hydrometeorological mass balance models yield data on the transfer of water from glaciers, excluding those in Greenland and Antarctica, to the oceans. The average observed volume change for the period 1900 to 1961 is scaled to a global average by use of the seasonal amplitude of the mass balance. These data are used to calibrate the models to estimate the changing contribution of glaciers to sea level for the period 1884 to 1975. Although the error band is large, these glaciers appear to account for a third to half of observed rise in sea level, approximately that fraction not explained by thermal expansion of the ocean.
[10]
孙作哲,陈建明.采用重复地面立体摄影测量方法测定冰川的变化[J].冰川冻土,1980(S1):54-56.
[ Sun Z ., Chen J M.Measurement on variation of glacial surface[J]. Journal of Glaciology and Geocryology, 1980,S1:54-56. ]
[11]
Bindschadler R.Monitoring ice sheet behavior from space[J]. Reviews of Geophysics, 1998,36(1):79-104.Satellite remote sensing has revolutionized ice sheet research. A variety of instruments sensitive to different parts of the electromagnetic spectrum take what the human eye detects as a flat, white desert and provide data sets rich in scientific information. Image-based maps of ice sheets are becoming commonplace and have become an integral component of field work. More than a pretty picture, the digital character of the satellite data from these instruments has become fundamental to the production of elevation, motion, accumulation, and reflectance data sets. Visible imagery shows the scientist a wealth of features that offer clues to the history and current behavior of the ice sheet. Radar and microwave imagery provide information from beneath the surface and have been used to estimate snow accumulation rates. Interferometry principles have recently been applied to measure surface topography and ice motion with unparalleled precision. Nonimaging instruments also keep a watchful eye, monitoring the ice sheet for indications of growth or shrinkage. Further expansion of the uses of satellite data is anticipated in the future.
[12]
Meier M F.Evaluation of ERTS imagery for mapping and detection of changes in snow cover on land and on glaciers, in symposium on significant results obtained from the earth resources technology satellite-1[C]. Washington, DC: NASA, 1973:863-875.
[13]
Bindschadler ., Dowdeswell ., Hall ., et al.Glaciological applications with Landsat-7 imagery: early assessments[J]. Remote Sensing of Environment, 2001,78(1-2):163-179.Enhanced Thematic Mapper Plus (ETM+) data from Landsat-7 are providing glaciologists with an ever-expanding data set that makes a comprehensive monitoring of the global cryosphere feasible for the first time in history. Examples of ETM+ data illustrate its ability to satisfy major scientific needs in the glaciological subdisciplines of sea-ice, glacier, ice-cap, and ice-sheet research with high-resolution optical satellite imagery. Examples shown include use as proxy ground-truth, positioning glacier termini and snowlines, and determining snow facies boundaries. The additional ETM+ panchromatic band, at a higher spatial resolution of 15 m, improves the spatial accuracy of these applications. The glaciological aspects of the Landsat-7 Long-Term Acquisition Plan are discussed to show how the timing and location of the image acquisitions will generate a cryospheric data set of unprecedented utility for future research.
[14]
Shi ., Dozier J.Measurement of snow and glacier covered areas by single-polarization SAR[J]. Annals of Glaciology, 1993,17:72-76.
[15]
Kargel J S.Compositional controls on the geological behavior of icy satellites, and a call for more lab data[C]. American Geophysical Union, Fall Meeting, 2006.
[16]
Li Z ., He Y ., Jia W ., et al.Response of "glaciers-runoff" system in a typical temperate-glacier, hailuogou glacier in gongga mountain of china to global change[J]. Scientia Geographica Sinica/Dili Kexue, 2008,28(2):229-234.
[17]
Kääb ., Huggel ., L Fischer, et al. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview[J]. Natural Hazards and Earth System Sciences, 2005,5(4):527-554.
[18]
Ye Q ., Kang S ., Chen ., et al.Monitoring glacier variations on geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies[J]. Journal of Glaciology, 2006,52(179):537-545.
[19]
Racoviteanu A ., Williams M ., Barry R G.Optical remote sensing of glacier characteristics: a review with focus on the Himalaya[J]. Sensors, 2008,8(5):3355-3383.The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances. The current limitations and on-going challenges in using remote sensing for mapping characteristics of mountain glaciers also discussed, specifically in the context of the Himalaya.
[20]
曹梅盛,李新,陈贤章,等.冰冻圈遥感[M].北京:科学出版社,2006.
[ Cao M ., Li ., Chen X ., et al.Cryosphere remote sensing[M]. Beijing: Science Press, 2006. ]
[21]
Kääb A.Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. a test study on Edgeøya, eastern Svalbard[J]. IEEE Transactions on Geosciences and Remote Sensing, 2008,46(10):2823-2830.
[22]
井哲帆,姚檀栋,王宁练.普若岗日冰原表面运动特征观测研究进展[J].冰川冻土,2003,25(3):288-290.冰川运动特征的分析研究有助于了解冰川的基本性质,是冰川学研究的重要内容之一.40a来,我国冰川学者先后对天山、阿尔泰山、祁连山、喀喇昆仑山、喜马拉雅山、念青唐古拉山以及横断山等部分冰川进行了冰川运动的观测研究<sup>[1~6]</sup>施雅风、黄茂桓等较为系统的总结了天山乌鲁木齐河源一号冰川的运动机理以及我国大陆型冰川运动的某些特征.这些分析观测的冰川类型均为山谷冰川或冰斗山谷冰川,而对冰帽型冰川的运动特征的观测分析甚少.
[ Jing Z ., Yao T ., Wang N L.The surface flow features of the puruogangri ice field[J]. Journal of Glaciology and Geocryology, 2003,25(3):288-290. ]
[23]
Shangguan ., Liu ., Ding ., et al.Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993[J]. Journal of Glaciology, 2008,54:949-951.Not Available
[24]
Tian ., J Zong, T Yao, et al. Direct measurement of glacier thinning on the southern Tibetan Plateau (Gurenhekou, Kangwure and Naimona'Nyi glaciers)[J]. Journal of Glaciology, 2014,60(223):879-888.
[25]
陈建明,刘潮海,金明燮.重复航空摄影测量方法在乌鲁木齐河流域冰川变化监测中的应用[J].冰川冻土,1996,18(4):331-336.介绍重复航空摄影测量对比成图方法在监测乌鲁木齐河流域冰川规模和形态要素变化中的应用,以及成图过程中对控制加密和精度等问题的处理。检验表明,航空摄影测量对比成图方法能较准确地量测冰川长度、面积和储量等全形态要素的变化量,可以用于区域冰川变化的监测研究。测量资料表明,1964~1992年间,乌鲁木齐河流域155条冰川的规模均在缩小,冰川末端平均后退率为12.4%,面积平均缩小率为13.8%,冰储量减少15.5%。
[ Chen J ., Liu C ., Jin M X.Application of the repeated aerial photogrammetry to monitoring glacier variat ion in the drainage area of the urumqi river[J]. Journal of Glaciology and Geocryology, 1996,18(4):31-336. ]
[26]
李震,秦翔.雷达高度计探测东南极地区冰面变化[J].冰川冻土,2003,25(3):268-271.利用美国SeaSat和GeoSat星载高度计,采用再跟踪算法完成雷达高度计数据处理,对大气影响、固体地球潮汛、坡度和水汽进行误差纠正,提取了南极东南部研究区两个年代的从海岸到72&deg;S的数条截面多条冰面剖面.结果表明:Lambert冰川/Amery冰架在1978&mdash;1986年间,Lambert冰川以西冰面平均高度上升0.92m,Lambert冰川以东冰面平均高度上升0.47m.
[ Li Z ., Qin X.Ice surface variation in east antarctica surveyed by satellite altimetry[J]. Journal of Glaciology and Geocryology, 2003,25(3):268-271. ]
[27]
Pieczonka ., Bolch ., Junfeng ., et al.Heterogeneous mass loss of glaciers in the aksu-tarim catchment (central Tien Shan) revealed by 1976 KH-9 hexagon and 2009 SPOT-5 stereo imagery[J]. Remote Sensing of Environment, 2013,130:233-244.The meltwater released by the glaciers in the Aksu-Tarim Catchment, south of Tomur Peak (Central Tien Shan), feeds the Tarim River which is the main artery for the oases at the northern margin of the Taklamakan desert. The correct modeling of the contribution of the glaciers meltwater to the total runoff of the Tarim River is hampered by the lack of mass balance data. Multi-temporal digital terrain models (DTMs) allow the determination of volume changes for large samples of glacier. Here, we present the mass changes for 12 glaciers using 1976 KH-9 Hexagon, 2000 SRTM3 and 2009 SPOT-5 datasets. The results show that most of the glaciers have been losing mass since 1976. The largest glaciers, Koxkar and West Qongterang, lost -0.27+/-0.15 m w.e.a(-1) and -0.43+/-0.15 m w.e.a(-1) between 1976 and 2009, despite thick debris cover. However, some smaller glaciers show mass gain at their tongues indicating glacier surges. Using SRTM3 data the volume gain of Qinbingtan Glacier No. 74 could be dated to the time period 1999-2009. The overall mass budget of -0.33+/-0.15 m w.e.a(-1) (for 1976-2009) of the investigated glaciers is within the variability range of the global average. However, in the recent years (1999-2009) a slightly decelerated mass loss of -0.23+/-0.19 m w.e.a(-1) could be observed. (C) 2012 Elsevier Inc. All rights reserved.
[28]
Van Niel T ., McVicar T ., Li ., et al. The impact of misregistration on SRTM and DEM image differences[J]. Remote Sensing of Environment, 2008,112(5):2430-2442.Image differences between Shuttle Radar Topography Mission (SRTM) data and other Digital Elevation Models (DEMs) are often performed for either accuracy assessment or for estimating vegetation height across the landscape. It has been widely assumed that the effect of sub-pixel misregistration between the two models on resultant image differences is negligible, yet this has not previously been tested in detail. The aim of this study was to determine the impact that various levels of misregistration have on image differences between SRTM and DEMs. First, very accurate image co-registration was performed at two study sites between higher resolution DEMs and SRTM data, and then image differences (SRTM鈥揇EM) were performed after various levels of misregistration were systematically introduced into the SRTM data. It was found that: (1) misregistration caused an erroneous and dominant correlation between elevation difference and aspect across the landscape; (2) the direction of the misregistration defined the direction of this erroneous and systematic elevation difference; (3) for sub-pixel misregistration the error due solely to misregistration was greater than, or equal to the true difference between the two models for substantial proportions of the landscape ( e.g. , greater than 33% of the area for a half-pixel misregistration); and (4) the strength of the erroneous relationship with aspect was enhanced by steeper terrain. Spatial comparisons of DEMs were found to be sensitive to even sub-pixel misregistration between the two models, which resulted in a strong erroneous correlation with aspect. This misregistration induced correlation with aspect is not likely specific to SRTM data only; we expect it to be a generic relationship present in any DEM image difference analysis.
[29]
METI/ERSDAC NASA/LPDAAC USGS/ERO., Nuth ., Kääb .. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. Cryosphere, 2011,5(1):271-290.There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter, most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system.
[30]
Zwally H ., B Schutz, Abdalati W, et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002,34(3-4):405-445.
[31]
Braun ., Fotopoulos G.Assessment of SRTM, ICESat, and survey control monument elevations in Canada[J]. Photogrammetric Engineering and Remote Sensing, 2007,73(12):1333-1342.The Shuttle Radar Topography Mission (SRTM) has provided homogeneous and highly accurate data for Digital Elevation Models (DEMs). It is important to realize that the SRTM DEM represents the Earth鈥檚 surface (vegetation, snow) as seen by a C-band SAR in February 2000 and not necessarily the bare terrain. The accuracy of the DEMs depends on various factors including the terrain roughness/slope, land-cover, snow/ice, and vegetation. Herein, an accuracy assessment of the C-band SRTM DEM is performed through comparisons with independent elevation data obtained from the laser altimetry mission ICESat (4.7 million footprints) and terrestrial height information at 33,000 survey control monuments in Alberta, Canada. Temporal elevation changes due to snow cover and vegetation are considered and presented for the provinces of Quebec and Alberta. The analysis focuses on both data and datum issues, which are required to provide a realistic assessment of the achievable accuracy.
[32]
Zhang G ., Xie H ., Kang S ., et al.Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment, 2011,115(7):1733-1742.In this study. ICESat altimetry data are used to provide precise lake elevations of the Tibetan Plateau (IF) during the period of 2003-2009. Among the 261 lakes examined ICESat data are available on 111 lakes: 74 lakes with ICESat footprints for 4-7 years and 37 lakes with footprints for 1-3 years. This is the first time that precise lake elevation data are provided for the 111 lakes. Those ICESat elevation data can be used as baselines for future changes in lake levels as well as for changes during the 2003-2009 period. It is found that in the 74 lakes (56 salt lakes) examined, 62 (i.e. 84%) of all lakes and 50 (i.e. 89%) of the salt lakes show tendency of lake level increase. The mean lake water level increase rate is 0.23 m/year for the 56 salt lakes and 0.27 m/year for the 50 salt lakes of water level increase. The largest lake level increase rate (0.80 m/year) found in this study is the lake Cedo Caka. The 74 lakes are grouped into four subareas based on geographical locations and change tendencies in lake levels. Three of the four subareas show increased lake levels. The mean lake level change rates for subareas I, II, III, IV, and the entire TP are 0.12, 0.26, 0.19, -0.11, and 0.2 m/year, respectively. These recent increases in lake level, particularly for a high percentage of salt lakes, supports accelerated glacier melting due to global warming as the most likely cause. (C) 2011 Elsevier Inc. All rights reserved.
[33]
Bamber J ., Rivera A.A review of remote sensing methods for glacier mass balance determination[J]. Global Planet Change, 2007,59(1-4):138-148.Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation鈥揳blation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25yr period.
[34]
Korona ., Berthier ., Bernard, et al. SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth international polar year (2007-2009)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009,64(2):204-212.<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">Monitoring the evolution of polar glaciers, ice caps and ice streams is of utmost importance because they constitute a good indicator of global climate change and contribute significantly to ongoing sea level rise. Accurate topographic surveys are particularly relevant as they reflect the geometric evolution of ice masses. Unfortunately, the precision and/or spatial coverage of current satellite missions (radar altimetry, ICESat) or field surveys are generally insufficient. Improving our knowledge of the topography of Polar Regions is the goal of the SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies) international polar year (IPY) project. SPIRIT will allow (1) the acquisition of a large archive of SPOT 5 stereoscopic images covering most polar ice masses and, (2) the delivery of digital terrain models (DTM) to the scientific community.</p><p id="">Here, we present the architecture of this project and the coverage achieved over northern and southern polar areas during the first year of IPY (July 2007 to April 2008). We also provide the first accuracy assessments of the SPIRIT DTMs. Over Jakobshavn Isbrae (West Greenland), SPIRIT elevations are within &plusmn;6&nbsp;m of ICESat elevations for 90% of the data. Some comparisons with ICESat profiles over Devon ice cap (Canada), St Elias Mountains (Alaska) and west Svalbard confirm the good overall quality of the SPIRIT DTMs although large errors are observed in the flat accumulation area of Devon ice cap. We then demonstrate the potential of SPIRIT DTMs for mapping glacier elevation changes. The comparison of summer-2007 SPIRIT DTMs with October-2003 ICESat profiles shows that the thinning of Jakobshavn Isbrae (by 30&ndash;40 m in 4&nbsp;years) is restricted to the fast glacier trunk. The thinning of the coastal part of the ice stream (by over 100 m) and the retreat of its calving front (by up to 10 km) are clearly depicted by comparing the SPIRIT DTM to an ASTER April-2003 DTM.</p>
[35]
Kääb A.Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya[J]. Remote Sensing of Environment, 2005,94(4):463-474.ABSTRACT The present study evaluates the fusion of DEMs from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the Shuttle Radar Topography Mission (SRTM). The study area consists of high elevation glaciers draining through the rough topography of the Bhutan Himalayas. It turns out that the ASTER-derived and SRTM3 DEMs have similar accuracy over the study area, but the SRTM3 DEM contains less gross errors. However, for rough topography large sections of the SRTM3 DEM contain no data. We therefore compile a combined SRTM3-ASTER DEM. From this final composite-master DEM, we produce repeat ASTER orthoimages from which we evaluate the DEM quality and derive glacier surface velocities through image matching. The glacier tongues north of the Himalayan main ridge, which enter the Tibet plateau, show maximum surface velocities in the order of 100&ndash;200 m year鈭1. In contrast, the ice within the glacier tongues south of the main ridge flows with a few tens of meters per year. These findings have a number of implications, among others for glacier dynamics, glacier response to climate change, glacier lake development, or glacial erosion. The study indicates that space-based remote sensing can provide new insights into the magnitude of selected surface processes and feedback mechanisms that govern mountain geodynamics.
[36]
Narama ., Kääb ., Kajiura ., et al.Spatial variability of recent glacier area and volume changes in central Asia using Corona, Landsat, ASTER and ALOS optical satellite data[J]. Geophysical Research Abstract, 2007,9(08178):1607-7962.
[37]
Zhu ., Tian ., Wang ., et al. Rapid glacier retreat in the Naimona'Nyi region, western Himalaya., between2003 and 2013[J]. Journal of Applied Remote Sensing, 2014(083508):1-8.
[38]
王超. 星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
[ Wang C.Spaceborne synthetic aperture radar interferometry[M]. Beijing: Science Press, 2002. ]
[39]
程晓,范湘涛,王长林,等.基于JERS-1雷达干涉测量的南极冰盖信息提取[J].极地研究,2005,17(2):99-106.<p>东南极格罗夫山地区是由我国科学家最新发现的南极内陆冰盖陨石富集地。本文采用该地区1996年三个时相的JERS-1合成孔径雷达(SAR)原始数据,进行了成像和干涉处理;分析了该地区的雷达图像特征,干涉条纹图与冰面地形、干涉基线(时相、空间)和冰川流动的关系,干涉相干性与基线和冰面变化的关系;定性地揭示了格罗夫山地区冰流的模式,发现了存在于角峰群内部的冰流。此外,本文还分析了该地区干涉去相干的主导因素。</p>
[ Cheng ., Fan X ., Wang CH l, et al. Application of jers-1 sar interferometry in antarctic grovemountain for glacier study[J]. Chinese Journal of Polar Research, 2005,17(2):99-106. ]
[40]
Goldstein E ., Kamp B.Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream[J]. Science, 1993,262:1525-1530.Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.
[41]
Neckel ., Braun ., Kropácek ., et al.Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry[J]. The Cryosphere Discussions, 2013,7(2):1119-1139.Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau (TP). This study presents an interferometrical approach aiming at surface elevation changes of Purogangri ice cap, located on the central TP. Purogangri ice cap covers an area of 397 卤 9.7 kmand is the largest ice cap on the TP. Its behavior is determined by dry and cold continental climate suggesting a polar-type glacier regime. We employed data from the actual TerraSAR-X mission and its add-on for Digital Elevation Measurements (TanDEM-X) and compare it with elevation data from the Shuttle Radar Topography Mission (SRTM). These datasets are ideal for this approach as both datasets feature the same wavelength of 3.1 cm and are available at a fine grid spacing. Similar snow conditions can be assumed since the data were acquired in early February 2000 and late January 2012. The trend in glacier extend was extracted using a time series of Landsat data. Our results show a balanced mass budget for the studied time period which is in agreement with previous studies. Additionally, we detected an exceptional fast advance of one glacier tongue in the eastern part of the ice cap between 1999 and 2011.
[42]
Tapley B ., Bettadpur ., Watkins ., et al.The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004,31(9):L09067.1] The GRACE mission is designed to track changes in the Earth's gravity field for a period of five years. Launched in March 2002, the two GRACE satellites have collected nearly two years of data. A span of data available during the Commissioning Phase was used to obtain initial gravity models. The gravity models developed with this data are more than an order of magnitude better at the long and mid wavelengths than previous models. The error estimates indicate a 2-cm accuracy uniformly over the land and ocean regions, a consequence of the highly accurate, global and homogenous nature of the GRACE data. These early results are a strong affirmation of the GRACE mission concept.
[43]
施雅风,苏珍.天山乌鲁木齐河源冰川的形态特征与历史演变[M].北京:科学出版社,1964.
[ Shi Y ., Su Z H.Tianshan mountain glacier in urumqi river head of morphological characteristics and historical evolution[M]. Beijing: Science Press, 1964. ]
[44]
秦大河,陈宜瑜,李学勇.中国气候与环境演变(上卷:气候与环境的演变及预测)[M].北京:科学出版社,2005.
[ Qin D ., Chen Y ., Li X Y.China's climate and environmental evolution (volume 1: the predictions of climate and environment evolution)[M]. Beijing: Science Press, 2005. ]
[45]
施雅风. 中国冰川与环境–现在、过去和未来[M].北京:科学出版社,2000.
[ Shi Y F.Glaciers and environment in China-present, past and future[M]. Beijing: Science Press, 2000. ]
[46]
Yang ., Yao ., Guo ., et al.Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2013,118(17):9579-9594.Based on glaciometeorological measurements and mass balance stake records during the 565year period of 2005–2010 on the southeast Tibetan Plateau, an energy‐mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glaciometeorological data sets. The good agreement between the snowpack height/mass balance simulations and the in situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy‐mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the “ideal” climatic regime leading to zero mass balance, with its annual mass balance of approximately 610.965m water equivalent during 2005–2010. Climatic sensitivity experiments were also carried out to interpret the observed mass balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such “spring‐accumulation type” glaciers are presumed to be distributed mainly within a narrow wedge‐shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balance are also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season, and the Indian monsoon in the summer season.
[47]
康世昌,陈锋,叶庆华,等.1970-2007年西藏念青唐古拉峰南、北坡冰川显著退缩[J].冰川冻土,2007,29(6):869-873.1999年和2007年夏季,利用GPS技术先后对念青唐古拉峰(念峰)南、北坡的5条冰川末端位置进行了实地测量.结果表明:同1970年比较发现,过去近40 a来5条冰川退缩显著,1970-2007年间念峰北坡的拉弄和扎当冰川与南坡的爬努冰川末端平均退缩速率均接近10.0 m&#183;a<sup>-1</sup>;西布冰川在1970-1999年间达到38.9 m&#183;a<sup>-1</sup>而爬努冰川流域海拔较高的小冰川5O270C0049退缩幅度较小,为4.8 m&#183;a<sup>-1</sup>.2007年野外观测发现,爬努冰川1970年代的积累区有冰面河形成.念峰周围的冰川变化,不仅仅是末端的显著退缩,而且消融区面积也在扩大.
[ Kang S ., Chen ., Ye Q H.Glacier retreating dramatically on the Mt. Nyainqüntanglha during the last 40 years[J]. Journal of Glaciology and Geocryology, 2007,29(6):869-873. ]
[48]
Ma ., Tian ., Pu ., et al.Recent area and ice volume change of Kangwure Glacier in the middle of Himalayas[J]. Chinese Science Bulletin, 2010,55(20):2088-2096.This paper calculated and evaluated the area and ice volume changes of Kangwure Glacier in Mt. Xixiabangma, middle of Himalayas in the past 3 decades, based on the field survey of glacier boundary position by differential GPS and glacier depth by Ground Penetrating Radar (GPR), together with the topographic map and remote sense data. The studied data showed that the Kangwure Glacier has experienced significant mass deficit since the 1970s, with 34.2% of area loss, 48.2% of ice volume loss and 7.5 m of average thickness decrease. This result revealed that the ice volume loss of Himalayan glaciers was more serious than expected. Analysis of meteorological data from two weather stations in the region of Mt. Xixiabangma, shows that the air temperature of this region has risen from the middle of the 20th century to the beginning of the 21st century. Significant retreat of Himalayas glacier driven by climatic warming will have a remarkable impact on hydrology and ecosystem.
[49]
米德生,罗祥瑞.利用陆地卫星象片量测冰川变化[J].冰川冻土,1983,5(1):71-78.大中比例尺航测地图是冰川研究工作中基本资料之一,从地图上可以了解到冰川某些数据,因此,人们期望用不同时期航测地图的比较以求得冰川面积和长度的变化。但是,航测地图的供应与冰川研究的需求仍有一定差距。自七十年代以来宇航规划转向研究地球资源为主要目标,其中陆地卫星每间隔18天或9天能够重复扫描地球上同一地区影象,从而缓和了航测地图的供求矛盾。
[ Mi D ., Luo X R.Using landsat image measurement glacier change[J]. Journal of Glaciology and Geocryology, 1983,5(1):71-78. ]
[50]
刘时银,沈永平,孙文新,等.祁连山西段小冰期以来的冰川变化研究[J].冰川冻土,2002,24(3):227-233.根据航空摄影相片、地形图、遥感影像数据,分析了祁连山西段自小冰期至1990年的冰川变化,得出该地区在小冰期至1956年间冰川面积减小幅度为16.9%,冰川储量减少了14.1%;1956-1990年间冰川仍以退缩为主,此时段冰川面积和储量减小量占1956年时相应量的10.3%和9.3%.分析认为冰川退缩主要与1956-1966年时段气温偏高、降水偏少有关,而且该流域区对应于1956-1966年间强负物质平衡的冰川退缩可能出现于1960年代中期至1970年代中期.
[ Liu S ., Shen Y ., Sun X W.Glacier variation since the maximum of the little ice age in the western Qilian mountains, northwest China[J]. Journal of Glaciology and Geocryology, 2002,24(3):227-233. ]
[51]
曾群柱,陈贤章.冰川与积雪动态的遥感监测[J].遥感信息,1990(2):28-29.
[ Zeng Q ., Chen X Z.Ice and snow dynamic remote sensing monitoring[J]. Remote Sensing Infomation, 1990,2:28-29. ]
[52]
叶庆华,陈锋,姚檀栋,等.近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究[J].遥感学报,2007,11(4):511-520.本文从1976,1990,1999的Landsat及2003年ASTER系列数字遥感影像上提取了喜马拉雅山脉西段纳木那尼峰地区的4期冰川空间分布数据,在Arc/Info中综合各期数据,建立研究区1976―2003年冰川变化图谱,定量分析了纳木那尼峰地区冰川的空间变化。图谱这种数据集成的方法明显优于直接将各期影像分类结果进行比较的传统研究方法。研究结果表明,纳木那尼峰地区的冰川以广泛退缩为主,但北部也有少量前进冰川存在。自1976年到2003年,冰川面积从84.41km2减少到77.29km2,各时段分别以平均0.17km/a,0.19km/a和0.77km/a的速度在退缩,冰川退缩明显加速。冰川退缩面积占研究区总面积的8.4%,明显比高亚洲冰川平均退缩比例(7%)大,表明西喜马拉雅山脉的冰川退缩比较严重。
[ Ye Q H, Chen F, Yao T D, et al.Tupu of glacier variations in the Mt. Naimona'Nyi region, western Himalayas, in the last three decades[J]. Journal of Remote Sensing, 2007,11(4):511-520. ]
[53]
李震,曾群柱.合成孔径雷达影象提取雪盖信息研究[J].环境遥感,1996(3):200-205.
[ Li ., Zeng Q Z.The method study of snow-cover mapping with SAR image[J]. Remote Sensing of Environment China, 1996(3):200-205. ]
[54]
施雅风. 简明中国冰川目录[M].上海:上海科学普及出版社,2005. [ Shi Y F. Concise Chinese glacier catalogue[M]. Shanghai: Shanghai Popular Science Press, 2005. ]
[55]
刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015(1):3-16.
[ Liu S ., Yao X ., Guo W ., et al.The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015,1:3-16. ]
[56]
Guo ., Liu ., Yao ., et al.The second Chinese glacier inventory: data, methods and results[J]. Journal of Glaciology, 2015,61(226):357-372.The second Chinese glacier inventory was compiled based on 218 Landsat TM/ETM+ scenes acquired mainly during 2006–10. The widely used band ratio segmentation method was applied as the first step in delineating glacier outlines, and then intensive manual improvements were performed. The Shuttle Radar Topography Mission digital elevation model was used to derive altitudinal attributes of glaciers. The boundaries of some glaciers measured by real-time kinematic differential GPS or digitized from high-resolution images were used as references to validate the accuracy of the methods used to delineate glaciers, which resulted in positioning errors of ±10m for manually improved clean-ice outlines and ±30m for manually digitized outlines of debris-covered parts. The glacier area error of the compiled inventory, evaluated using these two positioning accuracies, was ±3.2%. The compiled parts of the new inventory have a total area of 43 087 km, in which 1723 glaciers were covered by debris, with a total debris-covered area of 1494 km. The area of uncompiled glaciers from the digitized first Chinese glacier inventory is 658753 km, mainly distributed in the southeastern Tibetan Plateau, where no images of acceptable quality for glacier outline delineation can be found during 2006–10.
[57]
任贾文,秦大河,井哲帆.气候变暖使珠穆朗玛峰地区冰川处于退缩状态[J].冰川冻土, 1998,24(1):87-92.
[ Ren J ., Qin D ., Jing Z F.Climatic warming causes the glacier retreat in Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 1998,24(1):87-92. ]
[58]
Wang ., Li Z ., Gao W Y.Rapid shrinking of glaciers in the middle Qilian mountain region of northwest China during the last similar to 50 years[J]. Journal of Earth Science, 2011,22(4):539-548.During the past five decades, fluctuations of glaciers were reconstructed from historical documents, aerial photographs, and remote sensing data. From 1956 to 2003, 910 glaciers investigated had reduced in area by 21.7% of the 1956 value, with a mean reduction for the individual glacier of 0.10 km(2). The relative area reductions of small glaciers were usually higher than those of large ones, which exhibited larger absolute loss, indicating that the small glaciers were more sensitive to climate change than large ones. Over the past similar to 50 years, glacier area decreased by 29.6% in the Heihe (sic) River basin and 18.7% in the Beidahe (sic) River basin, which were the two regions investigated in the Middle Qilian (sic) Mountain region. Compared with other areas of the Qilian Mountain region, the most dramatic glacier shrinkage had occurred in the Middle Qilian Mountain region, mainly resulting from rapid rising temperatures. Regional differences in glacier area changes are related to local climate conditions, the relative proportion of glaciers in different size classes, and other factors.
[59]
曹泊. 祁连山东段冷龙岭现代冰川变化研究[D].兰州:兰州大学,2013.
[ Cao B.Glacier variation in the Lenglongling range of eastern Qilian mountains[D]. Lanzhou: University of Lanzhou, 2013. ]
[60]
李珊珊,张明军,李忠勤,等.1960-2009年中国天山现代冰川末端变化特征[J].干旱区研究, 2013(2):378-384.
[ Li S ., Zhang M ., Li Z ., et al.Variation of glacier terminuses in the Tianshan mountains, China, during the period of 1960-2009[J]. Arid Zone Research, 2013,2:378-384. ]
[61]
鲁安新,姚檀栋,刘时银,等.青藏高原各拉丹冬地区冰川变化的遥感监测[J].冰川冻土,2002,24(5):559-562.以位于青藏高原长江源头的各拉丹冬地区冰川为例, 利用2000年的TM数字遥感影像资料、 1969年的航空相片遥感资料、地形图及数字地形模型, 通过遥感图像处理和分析提取研究区小冰期最盛期(LIA)、 1969年和2000年的冰川范围, 并在地理信息系统技术支持下分析该地区冰川的进退情况. 研究结果表明, 该地区1969年冰川面积比小冰期最盛期的冰川面积减少了5.2%, 2000年的冰川面积比1969年的冰川面积减少了1.7%. 从1969年到2000年最大冰川退缩速度为-1.5 m&#183;a<sup>-1</sup> 最大冰川前进速度为+21.9 m&#183;a<sup>-1</sup>. 本区的冰川基本处于稳定状态, 冰川退缩的速度不是太大, 并有前进的冰川存在.
[ Lu A ., Yao T ., Liu S ., et al.Glacier change in the Geladandong area of the Tibetan Plateau monitored by remote sensing[J]. Journal of Glaciology and Geocryology, 2002,24(5):559-562. ]
[62]
蒲健辰,姚檀栋.普若岗日冰原及其小冰期以来的冰川变化[J].冰川冻土,2002,24(1):87-92.普若岗日是藏北高原最大的由数个冰帽型冰川组合成的大冰原.冰川覆盖面积422.58km<sup>2</sup>冰储量为52.5153km<sup>3</sup>.冰川雪线海拔5620~5860m.冰原呈辐射状向周围微切割的宽浅山谷溢出50多条长短不等的冰舌,最大的可伸至山麓地带,形成宽尾状冰舌.在一些下伸较低的冰舌段,形成有许多冰塔林,以雄伟壮观的连座冰塔林和雏形冰塔林为主.在东南部一些冰舌段雏形冰塔林的上部,分布着奇特的新月型雪冰丘和链状排列有序的雪冰丘.小冰期以来,普若岗日的冰川呈退缩趋势.环绕冰舌分布的冰碛序列,在北部和东南部普遍可区分出3道.对比研究认为,分别属于小冰期3次寒冷期冰进的遗迹.而西部小冰期冰川作用的范围较小.按小冰期最盛时的规模量测当时的冰川面积,和现在相比该时段内冰川面积减少了24.20km<sup>2</sup>当时冰川面积比现在大57%.由此引起的冰川资源的减少为3.6583km<sup>3</sup>相当于36.583×10<sup>8</sup>m<sup>3</sup>的水量.在普若岗日西侧,小冰期后期至20世纪70年代,冰川退缩了20m;70年代至90年代末,冰川退缩了40~50m;平均1.5~1.9m·a<sup>-1</sup>;1999年9月至2000年10月,退缩4~5m.明显反映出逐渐加剧的变化趋势.和其它地区相比较,普若岗日冰原变化比较小,表现出比较稳定的状。
[ Pu J ., Yao T D.Puruogangri ice field and its variations since the little ice age of the northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2002,24(1):87-92. ]
[63]
Ye Q ., Zhong ., Kang ., et al.Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China[J]. Journal of Mountain Science, 2009,6(3):211-220.
[64]
晋锐,车涛,李新,等.基于遥感和GIS的西藏朋曲流域冰川变化研究[J].冰川冻土,2004,26(3):261-266.以西藏朋曲流域为例,利用1970年代中国冰川编目数据、2000/2001年ASTER遥感影像及数字高程模型,得到研究区两期冰川分布图,在GIS支持下统计分析冰川变化趋势.结果表明:近30a流域内冰川数量减少10%,面积退缩9%,冰储量减少8.4%;通过对不同规模的冰川分析,再次证实小冰川对气候变化更为敏感.
[ Jin ., Che ., Li Xi., et al.Glacier variation in the Pumqu basin derived from remote sensing data and GIS technique[J]. Journal of Glaciology and Geocryology, 2004,26(3):261-266. ]
[65]
Li ., Cheng ., Jin ., et al.Cryospheric change in China[J]. Global and Planetary Change, 2008,62(3-4):210-218.This paper provides an overview of the current status of the cryosphere in China and its changes. Up-to-date statistics of the cryosphere in China are summarized based on the latest available data. There are 46,377 glaciers in China, covering an area of 59,425km 2 . The glacier ice reserve is estimated to be about 5600km 3 and the annual glacier runoff is about 61.602×0210 9 m 3 . The continuous snow cover extent (>0260days) in China is about 3.402×0210 6 km 2 and the maximum water equivalent is 95.902×0210 9 m 3 yr 61021 . The permafrost area in China is about 1.7202×0210 6 km 2 . The total ground ice reserve on the Qinghai–Tibetan Plateau is estimated to be about 10,923km 3 . Recent investigations indicated that glacier areas in China have shrunk about 2–10% over the past 45yr. Total glacier area has receded by about 5.5%. Snow mass has increased slightly. Permafrost is clearly degrading, as indicated by shrinking areas of permafrost, increasing depth of the active layer, rising of lower limit of permafrost, and thinning of the seasonal frost depth. Some models predict that glacier area shrinkage could be as high as 26.7% in 2050, with glacier runoff increasing until its maximum in about 2030. Although snow mass shows an increasing trend in western China, in eastern China the trend is toward decreasing snow mass, with increasing interannual fluctuations. Permafrost degradation is likely to continue, with one-third to one-half of the permafrost on the Qinghai–Tibetan Plateau anticipated to degrade by 2100. Most of the high-temperature permafrost will disappear by then. The permafrost in northeastern China will retreat further northward.
[66]
Kääb ., Berthier ., Nuth ., et al.Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012,488(7412):495-498.
[67]
Gardelle ., Berthier ., Arnaud Y.Slight mass gain of Karakoram glaciers in the early twenty-first century[J]. Nature Geoscience, 2012,5(5):322-325.Assessments of the state of health of Hindu-Kush-Karakoram-Himalaya glaciers and their contribution to regional hydrology and global sea-level rise suffer from a severe lack of observations. The globally averaged mass balance of glaciers and ice caps is negative. An anomalous gain of mass has been suggested for the Karakoram glaciers, but was not confirmed by recent estimates of mass balance. Furthermore, numerous glacier surges in the region that lead to changes in glacier length and velocity complicate the interpretation of the available observations. Here, we calculate the regional mass balance of glaciers in the central Karakoram between 1999 and 2008, based on the difference between two digital elevation models. We find a highly heterogeneous spatial pattern of changes in glacier elevation, which shows that ice thinning and ablation at high rates can occur on debris-covered glacier tongues. The regional mass balance is just positive at +0.11+/-0.22myrwater equivalent and in agreement with the observed reduction of river runoff that originates in this area. Our measurements confirm an anomalous mass balance in the Karakoram region and indicate that the contribution of Karakoram glaciers to sea-level rise was -0.01mmyrfor the period from 1999 to 2008, 0.05mmyrlower than suggested before.
[68]
Bolch ., Kulkarni ., Kaab ., et al.The state and fate of Himalayan glaciers[J]. Science, 2012,336(6079):310-314.Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.
[69]
Fujita ., Nuimura T.Spatially heterogeneous wastage of Himalayan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(34):14011-14014.We describe volumetric changes in three benchmark glaciers in the Nepal Himalayas on which observations have been made since the 1970s. Compared with the global mean of glacier mass balance, the Himalayan glaciers showed rapid wastage in the 1970s–1990s, but similar wastage in the last decade. In the last decade, a glacier in an arid climate showed negative but suppressed mass balance compared with the period 1970s–1990s, whereas two glaciers in a humid climate showed accelerated wastage. A mass balance model with downscaled gridded datasets depicts the fate of the observed glaciers. We also show a spatially heterogeneous distribution of glacier wastage in the Asian highlands, even under the present-day climate warming.
[70]
Gardelle, Berthier, Arnaud, et al. Region-wide glacier mass balances over the Pamir- Karakoram-Himalaya during1999-2011[J]. The Cryosphere, 2013(7):975-1028.
[71]
Neckel ., Kropáček ., Bolch ., et al. Glacier mass changes on the Tibetan Plateau2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014,9(1):014009(1-7).
[72]
Holzer ., Vijay ., Yao ., et al.Four decades of glacier variations at Muztag Ata (Eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data[J]. The Cryosphere Discuss., 2015,9(2):1811-1856.
[73]
Shangguan D ., Liu S ., Ding Y ., et al.Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery[J]. Annals of Glaciology, 2014,55(66):61-68.We use remote-sensing and GIS technologies to monitor glacier changes in the Koshi River basin, central Himalaya. The results indicate that in 2009 there were 2061 glaciers in this region, with a total area of 3225 90.3 km(2). This glacier population is divided into 1290 glaciers, with a total area of 1961 +/- 54.9 km(2), on the north side of the Himalaya (NSH), and 771 glaciers, with a total area of 1264 +/- 35.4 km(2), on the south side of the Himalaya (SSH). From 1976 to 2009, glacier area in the basin decreased by about 19 +/- 5.6% (0.59 +/- 0.17% a(-1)). Glacier reduction was slightly faster on SSH (20.3 +/- 5.6%) than on NSH (18.8 +/- 5.6%). The maximum contribution to glacier area loss came from glaciers within the 1-5 km(2) area interval, which accounted for 32% of total area loss between 1976 and 2009. The number of glaciers in the Koshi River catchment decreased by 145 between 1976 and 2009. Glacier area on SSH decreased at a rate of 6.2 +/- 3.2% (0.68 +/- 0.36% a(-1)), faster than on NSH, where the rate was 2.5 +/- 3.2% (0.27 +/- 0.36% a(-1)) during 2000-09. Based on records from Tingri weather station, we infer that temperature increase and precipitation decrease were the main causes of glacier thinning and retreat during the 1976-2000 period. Glacier retreat during the 2000-09 period appears to be controlled by temperature increase, since precipitation increase over this period did not offset ice losses to surface melting.
[74]
Ye Q ., T Bolch, Naruse R, et al. Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data[J]. Journal of Hydrology, 2015,530:273-280.
[75]
宗继彪,叶庆华,田立德.基于ICESat/GLAS,SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000-2010年)[J].科学通报,2014,21:2108-2118.lt;p>气候变化所导致的冰川加速消融及冰川冰储量的减少将显著影响区域水资源和水循环,而冰川厚度的变化是反映这一过程的关键指标.利用ICESat/GLAS数据与SRTMDEM数据,并结合冰面差分GPS实测数据,通过监测喜马拉雅山脉西段纳木那尼冰川的冰面高程变化,来估算其冰川厚度变化.在方法上,首先利用非冰川区的ICESat高程数据对SRTMDEM高程精度进行评价,然后选择控制点对SRTMDEM进行配准并再次评价,SRTMDEM水平位置偏移为138m,配准后的SRTMDEM与ICESat高程差平均值为-0.1m,标准差为11m,最后利用校准后的SRTMDEM与ICESat/GLAS,计算2000~2009年纳木那尼冰面高程的变化.研究结果表明,纳木那尼冰川在2000~2009年间的平均减薄速率为0.63&plusmn;0.32m/a,这与利用差分GPS测得的2008~2010年间冰川平均减薄速率0.65&plusmn;0.25m/a接近.研究结果也发现纳木那尼冰川的减薄速率整体上随着海拔的升高而逐渐减小.普兰县气象资料分析表明纳木那尼冰面的快速消融主要是由当地气温升高所致.</p>
[ Zong J ., Ye Q ., Tian L D.Recent Naimona’Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements[J]. Chinese Science Bulletin (Chinese Version), 2013,58:2108-2118. ]
[76]
Moholdt ., Nuth ., Hagen J ., et al.Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sensing of Environment, 2010,114(11):2756-2767.We have tested three methods for estimating 2003-2008 elevation changes of Svalbard glaciers from multi-temporal ICESat laser altimetry: (a) linear interpolation of crossover points between ascending and descending tracks, (b) projection of near repeat-tracks onto common locations using Digital Elevation Models (DEMs), and (c) least-squares fitting of rigid planes to segments of repeat-track data assuming a constant elevation change rate. The two repeat-track methods yield similar results and compare well to the more accurate, but sparsely sampled, crossover points. Most glacier regions in Svalbard have experienced low-elevation thinning combined with high-elevation balance or thickening during 2003-2008. The geodetic mass balance (excluding calving front retreat or advance) of Svalbard's 34,600km2 glaciers is estimated to be -4.3卤1.4 Gt y-1, corresponding to an area-averaged water equivalent (w.e.) balance of -0.12卤0.04m w.e. y-1. The largest ice losses have occurred in the west and south, while northeastern Spitsbergen and the Austfonna ice cap have gained mass. Winter and summer elevation changes derived from the same methods indicate that the spatial gradient in mass balance is mainly due to a larger summer season thinning in the west and the south than in the northeast. Our findings are consistent with in-situ mass balance measurements from the same period, confirming that repeat-track satellite altimetry can be a valuable tool for monitoring short term elevation changes of Arctic glaciers. 漏 2010 Elsevier Inc.
[77]
Huss M.Density assumptions for converting geodetic glacier volume change to mass change[J]. Cryosphere, 2013,7(3):877-887.The geodetic method is widely used for assessing changes in the mass balance of mountain glaciers. However, comparison of repeated digital elevation models only provides a glacier volume change that must be converted to a change in mass using a density assumption or model. This study investigates the use of a constant factor for the volume-to-mass conversion based on a firn compaction model applied to simplified glacier geometries with idealized climate forcing, and two glaciers with long-term mass balance series. It is shown that the 'density' of geodetic volume change is not a constant factor and is systematically smaller than ice density in most cases. This is explained by the accretion/removal of low-density firn layers, and changes in the firn density profile with positive/negative mass balance. Assuming a value of 850 +/- 60 kg m(-3) to convert volume change to mass change is appropriate for a wide range of conditions. For short time intervals (3 yr), periods with limited volume change, and/or changing mass balance gradients, the conversion factor can however vary from 0-2000 kg m(-3) and beyond, which requires caution when interpreting glacier mass changes based on geodetic surveys.
[78]
Kääb ., Treichler ., Nuth ., et al.Brief communication: contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015,9(2):557-564.We present glacier thickness changes over the entire Pamir-Karakoram-Himalaya arc based on ICESat satellite altimetry data for 2003-2008. We highlight the importance of C-band penetration for studies based on the SRTM elevation model. This penetration seems to be of potentially larger magnitude and variability than previously assumed. The most negative rate of region-wide glacier elevation change (<-1 m yr) is observed for the eastern Nyainq锚ntanglha Shan. Conversely, glaciers of the western Kunlun Shan are slightly gaining volume, and Pamir and Karakoram seem to be on the western edge of this mass-gain anomaly rather than its centre. For the Ganges, Indus and Brahmaputra basins, the glacier mass change reaches -24 卤 2 Gt yr, about 10% of the current glacier contribution to sea-level rise. For selected catchments, we estimate glacier imbalance contributions to river run-off from a few percent to greater than 10%.
[79]
赵永利. 念青唐古拉西段冰储量变化的遥感估算[D].北京:中国科学院大学,2014.
[ Zhao Y L.The ice reserves change estimation in Nyenchen tanglha using remote sensing[D]. Beijing: University of Chinese Academy of Science, 2014. ]
[80]
Shangguan ., Liu ., Ding ., et al.Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China[J]. Journal of Glaciology, 2010,56(196):309-317.We use topographic maps, historical data, multispectral satellite data and real-time kinematic GPS data to analyze glacier area, length and ice-elevation changes of two glaciers in the central Qilian Shan, China, between 1956 and 2007. We find that the fronts of Yanglonghe glacier No. 1 (5Y432A1) and Yanglonghe glacier No. 5 (5Y432A5) have retreated by 266.5 ± 37.1 m (5.2 ± 0.73 m a) and 181.4 ± 37.1 m (3.6 ± 0.73 m a) respectively, and that this retreat accelerated after 1999. During the study period, the glacier areas decreased by 654.1% and 15.9% respectively. In addition, spatially non-uniform thinning, which averaged 20.2 ± 11 m (0.4 ± 0.22 m a) and 16.9 ± 11 m (0.33 ± 0.22 m a) in the ablation areas of 5Y432A1 and 5Y432A5 respectively, is observed using digital elevation models constructed using data from 1956, 1977 and 2007. The ice-volume depletion from 5Y432A1 (2.91 × 10m) was 2.7 times greater than from the smaller 5Y432A5 (1.08 × 10m). Based on records from nearby Tuole weather station, increasing annual temperatures are principally responsible for the observed glacier thinning and retreat.
[81]
Zhang ., Liu ., Shangguan ., et al.Thinning and shrinkage of Laohugou No.12 glacier in the western Qilian mountains, China, from 1957 to 2007[J]. Journal of Mountain Science, 2012,9(3):343-350.Landsat images, real-time kinematic GPS measurements, and topographic maps were used to determine changes in ice elevation, volume, and areal extent of the Laohugou No. 12 glacier (Qilian Mountains, China) between 1957 and 2007. The glacier experienced significant thinning and areal shrinkage in the ablation zone, but slight thickening in part of the accumulation zone. Elevation decreased by 18.6卤5.4 m between 1957 and 2007 in the regions covered by the GPS measurements. The total volume loss for the entire glacier was estimated to be 0.218 km3 using a third-order polynomial fit method. The area diminished by 0.28 km2 between 1957 and 1994, 0.26 km2 between 1994 and 2000, and 0.28 km2 between 2000 and 2007, suggesting that the rate of loss in glacial coverage has increased since the mid-1990s. Significant increases in annual mean air temperature may have contributed to shrinkage and thinning of the glacier.
[82]
刘宇硕,秦翔,张通,等.祁连山东段冷龙岭地区宁缠河3号冰川变化研究[J].冰川冻土,2012, 34(5):1031-1036.2009年7月对祁连山东段冷龙岭地区宁缠河3号冰川进行了野外考察, 对冰川周围布设测量控制网, 并利用GPS-RTK技术测量了冰川表面高程与面积、 末端等信息, 同时使用加拿大EKKO型探地雷达测量了冰川厚度. 结合1972年航测1973年调绘出版的地形图以及1995年与2009年两景TM影像等资料, 分析研究了宁缠河3号冰川自1972年以来的变化. 结果表明: 宁缠河3号冰川近37 a以来萎缩严重, 冰川末端退缩约6%, 面积减小13.1%, 冰川体积减少35.3%; 冰川主要以减薄的形式在萎缩, 冰川平均厚度由1972年的36.8 m, 减为2009年的27.4 m. 周边站点气象资料表明, 该区域近几十年来出现不同程度的升温, 是导致冰川快速萎缩的主要原因.
[ Liu Y ., Qin ., Zhang ., et al.Variation of the Ningchan river glacier no.3 in the Lenglongling range, east Qilian mountains[J]. Journal of Glaciology and Geocryology, 2012,34(5):1031-1036. ]
[83]
王玉哲,任贾文,秦大河,等.利用卫星资料反演区域冰川冰量变化的尝试——以祁连山为例[J].冰川冻土,2013,35(3):583-592.lt;p>物质平衡是衡量冰川&quot;健康&quot;状况的最好方式, 由于野外工作开展难度大, 物质平衡观测仅局限于少数几条冰川上, 限制了区域冰川物质平衡和冰量变化的评估. 通过卫星高程数据可以监测区域冰川高程变化, 进而可估算其冰量变化. 利用SRTM和ICESat激光测高数据反演了祁连山冰川冰量变化, 结果表明: 21世纪初祁连山冰川处于物质亏损状态, 年平均高程减薄(0.345&plusmn;0.258) m, 相当于(0.293&plusmn;0.219) m w.e., 估算祁连山冰川年均冰量损失为(534.2&plusmn;399.5)&times;10<sup>6</sup>m<sup>3</sup>w.e.. 由于祁连山各冰川区相对独立, 相隔较远, 冰川规模普遍不大, 且ICESat地面轨迹在中低纬度分布稀疏, 使得结果的不确定性还很大.</p>
[ Wang Y ., Ren J ., Qin D ., et al.Regional glacier volume changes derived from satellite data: a test study on Qilian mountains[J]. Journal of Glaciology and Geocryology, 2013,35(3):583-592. ]
[84]
Ye ., Zong J.Glacier melting is accelerated in the Rongbuk catchment on Mt. Qomolangma (Everest)[J]. Journal of Glaciology, in submission.
[85]
赵瑞. 希夏邦马峰地区冰川储量变化时空特征的遥感研究[D].北京:中国科学院大学,2015.
[ Zhao R.Glacier reserve of Xixiabangma peak area changes in time and space features of remote sensing research[D]. Beijing: University of Chinese Academy of Science, 2015. ]
[86]
Paul ., Haeberli W.Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models[J]. Geophysical Research Letters, 2008,35(21):189-203.1] Massive glacier thinning in the Alps during the past 20 years is documented by direct mass balance measurements on nine regularly observed glaciers. How representative this limited sample of glaciers is for the entire Alps, however, remained uncertain. The near-global digital terrain model from the SRTM enables a closer analysis of this question, which is of fundamental importance to assess overall glacier volume change. Here we present elevation changes from 1985 to 1999 for about 1050 glaciers in the Swiss Alps. The analysis reveals extreme thickness losses (>80 m) for flat/low-lying glacier tongues and a strong overall surface lowering. The mean cumulative mass balance of the nine glaciers with direct measurements (6110.8 m w.e.) agrees well with the mean change of the entire region from DEM differencing (6111 m w.e.) and can thus be considered to be representative. Mean thickness change of individual glaciers is correlated with their size, elevation, and exposure to solar irradiation. This implies that mass losses of large glaciers can be underestimated when they are directly inferred from values measured at much smaller glaciers.
[87]
Nuth ., Kaab A.Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. Cryosphere, 2011,5(1):271-290.There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter, most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system.
[88]
黄秉维. 地理学的一些最主要的趋势[J].地理学报,1960,26(3):149-154.地理学是研究地理环境的成分及各成分之间物貭、能量交换及其地域差异的科但基本上没有走出经验性、描述性的范围,理论基础非常薄弱;
[ Huang B W.Some of the most main trend of geography[J]. Acta Geographica Sinica, 1960,26(3):149-154. ]
[89]
施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J].冰川冻土,2001,23(4):333-341.根据有不确定性的综合预测,到2050年左右青藏高原温度可比20世纪末升高2.5℃左右,其导致冰川强烈消融的夏季升温为1.4℃,将使平衡线上升100 m以上.冰舌区消融冰量超过积累区冰运动来的冰量,冰川出现变薄后退,初期以变薄为主融水量增加,后期冰川面积大幅度减少,融水量衰退,至冰川消亡而停止.考虑冰川大小,冰川类型响应气候变暖的敏感性有重大差别,应用新编中国冰川目录的统计数据,选择若干区域,预估2050年前冰川萎缩对水资源影响情景.祁连山北麓河西地区,天山北麓准噶尔盆地南缘,天山南麓吐鲁番-哈密盆地的多数出山河流的冰川,以面积小于2 km<sup>2</sup>者占绝对优势,对气候变暖最为敏感,衰退迅速,本世纪初期出现融水量高峰,中期融水量减少,对每条河流的影响以10<sup>6</sup>~10<sup>7</sup>m<sup>3</sup>·a<sup>-1</sup>计.少数流域如疏勒河、玛纳斯河等,冰川融水量占河川径流1/3以上,有若干5~30 km<sup>2</sup>左右中等规模冰川存在,预期至本世纪中期才出现融水高峰,融水增加值以10<sup>8</sup>m<sup>3</sup>·a<sup>-1</sup>计.塔里木盆地周围高山冰川总面积达22 00 km<sup>2</sup>有面积超过100 km<sup>2</sup>、冰舌为厚表覆盖的大冰川22条,退缩缓慢,冰川融水量在叶尔羌河、玉龙喀什河与阿克苏河等占50%~80%.现在塔里木河干流主要靠天山西南部大冰川融水补给,预期2050年前冰川融水一直处于增长状态,增长量较世纪初可达25%~50%,较重要的7条河流年增长可达10<sup>8</sup>m<sup>3</sup>·a<sup>-1</sup>量级,为有效利用增长融水,应加速修建山区水库,以增加发电和灌溉效能,并减少蒸发.柴达木盆地和青藏高原内陆流域,以冰温低、退缩缓慢的极大陆型冰川为主,本世纪上半期升温与融水增加有利于畜牧业和经济发展.青藏高原东南部和横断山系的海洋型冰川区,降水量大,冰温高、升温与冰川加剧融化,冰川快速后退,可导致洪水与冰川泥石流大量发生,弊多利少.
[ Shi Y F.Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in west China[J]. Journal of Glaciology and Geocryology, 2001,23(4):333-341. ]
[90]
Yang ., Wu ., Qin ., et al.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014,112(11):79-91.The Tibetan Plateau (TP) exerts strong thermal forcing on the atmosphere over Asian monsoon region and supplies water resources to adjacent river basins. Recently, the Plateau experienced evident climate changes, which have changed atmospheric and hydrological cycles and thus reshaped the local environment. This study reviewed recent research progress in the climate changes and explored their impacts on the Plateau energy and water cycle, based on which a conceptual model to synthesize these changes was proposed and urgent issues to be explored were summarized.
[91]
林珲,陈旻.利用虚拟地理环境的实验地理学方法[J].武汉大学学报·信息科学版,2014,39(6):689-694,700.近年来,随着虚拟地理环境结构和功能的逐渐清晰,虚拟地理环境的地学分析及地理实验辅助功能逐步得到了重视.基于对地理学实验特征及任务的分析,讨论了虚拟地理环境对改进传统地理学实验的贡献,借此倡导基于虚拟地理环境以“虚实结合”的方法开展综合、协作式地理实验.
[ Lin ., Chen M.Experimental geography based on virtual geographic environments(VGEs)[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):689-694,700. ]

脚注

The authors have declared that no competing interests exist.

基金

国家自然科学基金项目“青藏高原西部地区冰川冰储量变化及水文效应”(41530748)、“全球环境变化遥感对比研究”(41120114001)
科技基础性工作专项项目“中国西部主要冰川作用中心冰量变化调查”(2013FY111400-2)
PDF(2871 KB)
可视化

文章所在专题

综述文章

2874

Accesses

0

Citation

Detail

段落导航
相关文章

/