基于O2大气带及近红外大气带气辉的临近空间温度廓线联合反演

武魁军, 王治华, 王道琦, 宿家瑞, 于光保, 李发泉, 何微微. 2024. 基于O2大气带及近红外大气带气辉的临近空间温度廓线联合反演. 地球物理学报, 67(9): 3265-3276, doi: 10.6038/cjg2024R0805
引用本文: 武魁军, 王治华, 王道琦, 宿家瑞, 于光保, 李发泉, 何微微. 2024. 基于O2大气带及近红外大气带气辉的临近空间温度廓线联合反演. 地球物理学报, 67(9): 3265-3276, doi: 10.6038/cjg2024R0805
WU KuiJun, WANG ZhiHua, WANG DaoQi, SU JiaRui, YU GuangBao, LI FaQuan, HE WeiWei. 2024. Joint retrieval of near space temperature profiles based on the atmospheric and near-infrared atmospheric bands of O2 airglow. Chinese Journal of Geophysics (in Chinese), 67(9): 3265-3276, doi: 10.6038/cjg2024R0805
Citation: WU KuiJun, WANG ZhiHua, WANG DaoQi, SU JiaRui, YU GuangBao, LI FaQuan, HE WeiWei. 2024. Joint retrieval of near space temperature profiles based on the atmospheric and near-infrared atmospheric bands of O2 airglow. Chinese Journal of Geophysics (in Chinese), 67(9): 3265-3276, doi: 10.6038/cjg2024R0805

基于O2大气带及近红外大气带气辉的临近空间温度廓线联合反演

  • 基金项目:

    国家自然科学基金项目(62305283, 41975039, 41704178), 山东省高校青年创新技术项目(2021KJ008), 山东省自然科学基金项目(ZR2021QD088), 烟台大学研究生科研创新基金项目(GGIFYTU2313)资助

详细信息
    作者简介:

    武魁军, 男, 博士, 教授, 主要从事光学遥感及空间物理方面的研究. E-mail: wukuijun@ytu.edu.cn

    通讯作者: 何微微, 女, 博士, 副教授, 主要从事光学遥感及空间物理方面的研究. E-mail: heweiwei@ytu.edu.cn
  • 中图分类号: P351

Joint retrieval of near space temperature profiles based on the atmospheric and near-infrared atmospheric bands of O2 airglow

More Information
  • 临近空间大气温度廓线信息对于支撑临近空间开发与利用具有重要的学术意义和工程价值.基于O2分子气辉光谱理论及大气辐射传输机理提出了利用O2大气带及近红外大气带气辉光谱信号联合反演临近空间温度廓线的方法.利用"剥洋葱"算法, 处理扫描成像吸收光谱仪(SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, SCIAMACHY)在临边观测模式下测量得到的O2(a1Δg)波段和O2(b1g+)波段的气辉辐射光谱信号, 采用最优化算法分别反演得到了50~110 km以及80~130 km的温度廓线信息, 并通过与宽带辐射大气测量仪(Sounding of the Atmosphere using Broadband Emission Radiometry, SABER)、大气化学实验傅里叶变换光谱仪(Atmospheric Chemistry Experiment Fourier transform spectrometer, ACE-FTS)、迈克尔逊被动大气探测干涉仪(Michelson Interferometer for Passive Atmospheric Sounding, MIPAS)等遥感卫星的温度产品数据对比, 验证了O2(a1Δg)波段和O2(b1g+)波段气辉反演温度的可靠性与合理性.研究结果表明, 利用O2大气带及近红外大气带气辉联合反演温度可以有效覆盖中间层-低热层的临近空间区域(50~130 km); O2(a1Δg)及O2(b1g+)波段气辉光谱在80~100 km高度范围内存在交叠区域, 温度反演结果的相关系数优于99.9%;自吸收效应与大气散射, 以及光谱污染及信噪比降低分别是导致50以下及130 km以上区域温度反演结果出现偏差的主要原因.

  • 加载中
  • 图 1 

    在100 K和400 K两种不同温度下O2分子的气辉辐射光谱

    Figure 1. 

    O2 airglow radiation spectrum at two different temperatures of 100 K and 400 K

    图 2 

    临边观测几何结构

    Figure 2. 

    Limb observation geometry

    图 3 

    O2分子气辉在不同切线高度下的气辉光谱辐射强度

    Figure 3. 

    O2 airglow spectral radiation intensity at different tangent heights

    图 4 

    O2分子气辉不同目标层的气辉光谱辐射效率

    Figure 4. 

    O2 airglow spectral radiation efficiency at different target layers

    图 5 

    O2分子气辉在不同切线高度下气辉辐射实测光谱与模拟光谱的拟合结果和残差

    Figure 5. 

    Fitting results and residuals of measured and simulated radiation spectra of O2 airglow at different tangent heights

    图 6 

    SCIAMACHY O2(a1Δg)波段及O2(b1g+)波段气辉反演温度结果与SABER温度廓线对比

    Figure 6. 

    SCIAMACHY temperature retrieval results using O2(a1Δg) band and O2(b1g+) band airglow compared with SABER temperature profiles

    图 7 

    SCIAMACHY O2(a1Δg)波段及O2(b1g+)波段气辉反演温度结果与ACE-FTS温度廓线对比

    Figure 7. 

    SCIAMACHY temperature retrieval results using O2(a1Δg) band and O2(b1g+) band airglow compared with ACE-FTS temperature profiles

    图 8 

    SCIAMACHY O2(a1Δg)波段和O2(b1g+)波段气辉联合反演温度结果与ACE-FTS温度廓线对比

    Figure 8. 

    SCIAMACHY temperature joint retrieval results using O2(a1Δg) band and O2(b1g+) band airglow compared with ACE-FTS temperature profiles

    图 9 

    SCIAMACHY O2(a1Δg)波段和O2(b1g+)波段气辉联合反演温度和MIPAS纬向对比

    Figure 9. 

    SCIAMACHY joint retrieval temperature results using O2(a1Δg) band and O2(b1g+) band airglow compared with MIPAS temperature profiles in latitude direction

    图 10 

    SCIAMACHY在O2(a1Δg)波段和O2(b1g+)波段温度反演结果的对比

    Figure 10. 

    Internal comparison of temperature retrieval results between O2(a1Δg) band and O2(b1g+) band

  •  

    Boone C D, Bernath P F, Cok D, et al. 2020. Version 4 retrievals for the atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) and imagers. Journal of Quantitative Spectroscopy and Radiative Transfer, 247: 106939, doi: 10.1016/j.jqsrt.2020.106939.

     

    Cao X F, Li X Y, Luo Q, et al. 2021. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors. National Remote Sensing Bulletin (in Chinese), 25(2): 577-598, doi: 10.11834/jrs.20210009.

     

    Emmert J T, Drob D P, Picone J M, et al. 2021. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 8(3): e2020EA001321, doi: 10.1029/2020ea001321.

     

    Feng Y T, Fu D, Zhao Z L, et al. 2023. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing. Acta Optica Sinica (in Chinese), 43(6): 0601011, doi: 10.3788/AOS221462.

     

    Gong X Y, Hu X, Wu X C, et al. 2013. Comparison of temperature measurements between COSMIC atmospheric radio occultation and SABER/TIMED. Chinese Journal of Geophysics (in Chinese), 56(7): 2152-2162, doi: 10.6038/cjg20130702.

     

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022. The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 277: 107949, doi: 10.1016/j.jqsrt.2021.107949.

     

    Guo S Y, Hu X, Yan Z A, et al. 2022. Studies for mesopause temperature distribution characteristics based on the sodium lidar data. Chinese Journal of Space Science (in Chinese), 42(5): 913-918, doi: 10.11728/cjss2022.05.210901096.

     

    He W W, Wu K J, Feng Y T, et al. 2019a. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry. Remote Sensing, 11(22): 2702, doi: 10.3390/rs11222702.

     

    He W W, Wu K J, Wang S N, et al. 2019b. Observation technology of wind and temperature by onboard imaging interferometer with 1.27 μm air glow. Optics & Optoelectronic Technology (in Chinese), 17(2): 72-78, doi: 10.19519/j.cnki.1672-3392.2019.02.012.

     

    Hu X R, Li F Q, Wang H M, et al. 2023. Retrieval and verification of mid upper atmospheric temperature from MIGHTI/ICON satellite. Acta Optica Sinica (in Chinese), 43(12): 1201006, doi: 10.3788/AOS221914.

     

    Li H T, Feng Y T, Li F Q, et al. 2023. A new Einstein coefficient method for mesopause-lower thermosphere atmosphere temperature retrieval under a non-local thermal equilibrium situation. Optics Express, 31(19): 30413-30434. doi: 10.1364/OE.498765.

     

    Ma J, Zhu M, Wang C X, et al. 2022. Technology and development prospect of electro-optical detection in near space. Aerospace Technology (in Chinese), (2): 85-96, doi: 10.16338/j.issn.2097-0714.20220616.

     

    Sun K, Gordon I E, Sioris C E, et al. 2018. Reevaluating the use of O2 a1Δg band in spaceborne remote sensing of greenhouse gases. Geophysical Research Letters, 45(11): 5779-5787, doi: 10.1029/2018gl077823.

     

    Sun K, Yousefi M, Chan Miller C, et al. 2022. An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations. Atmospheric Measurement Techniques, 15(12): 3721-3745, doi: 10.5194/amt-15-3721-2022.

     

    Wang Y, Zhang X Z, Wu T, et al. 2023. Research on atmospheric temperature retrieval based on rayleigh lidar using optimal estimation method. Chinese Journal of Space Science (in Chinese), 43(4): 627-639, doi: 10.11728/cjss2023.04.2022-0035.

     

    Ward W E, Gault W A, Shepherd G G, et al. 2001. Waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents. //Proceedings Volume 4540, Sensors, Systems, and Next-Generation Satellites V. Toulouse, France: SPIE, 100-111.

     

    Wu K J, He W W, Feng Y T, et al. 2020. Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 μm O2 dayglow. Atmospheric Measurement Techniques, 13(4): 1817-1824, doi: 10.5194/amt-13-1817-2020.

     

    Wu K J, Wu C H, Hu X R, et al. 2023. Hyperspectral-resolved radiative transmission theory of O2(a1Δg) dayglow on Mars. Chinese Journal of Geophysics (in Chinese), 66(5): 1864-1875, doi: 10.6038/cig2022Q0592.

     

    Yin X H, Qin J Q, Paxton L J. 2023. A new strategy for ionospheric remote sensing using the 130.4/135.6 nm airglow intensity ratios. Earth Planet. Phys., 7(4), 445-459. doi: 10.26464/epp2023042.

     

    Yang X J, Wang H M, Li Y F, et al. 2021. Temperature in the near space from the emission spectra of oxygen A band. Spectroscopy and Spectral Analysis (in Chinese), 41(1): 5-10, doi: 10.3964/j.issn.1000-0593(2021)01-0005-06.

     

    Zarboo A, Bender S, Burrows J P, et al. 2018. Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans. Atmospheric Measurement Techniques, 11(1): 473-487. doi: 10.5194/amt-11-473-2018

     

    曹西凤, 李小英, 罗琪等. 2021. 星载红外高光谱传感器温度廓线反演综述. 遥感学报, 25(2): 577-598, doi: 10.11834/jrs.20210009.

     

    冯玉涛, 傅頔, 赵增亮等. 2023. 星载被动光学遥感大气风场探测技术进展综述. 光学学报, 43(6): 0601011, doi: 10.3788/AOS221462.

     

    宫晓艳, 胡雄, 吴小成等. 2013. COSMIC大气掩星与SABER/TIMED探测温度数据比较. 地球物理学报, 56(7): 2152-2162, doi: 10.6038/cjg20130702.

     

    郭商勇, 胡雄, 闫召爱等. 2022. 基于钠激光雷达观测数据的中间层顶大气温度分布特性研究. 空间科学学报, 42(5): 913-918, doi: 10.11728/cjss2022.05.210901096.

     

    何微微, 武魁军, 王姝娜等. 2019b. 1.27μm气辉的星载成像干涉仪风温探测技术. 光学与光电技术, 17(2): 72-78, doi: 10.19519/j.cnki.1672-3392.2019.02.012.

     

    胡向瑞, 李发泉, 王后茂等. 2023. MIGHTI/ICON卫星的中高层大气温度反演与验证. 光学学报, 43(12): 1201006, doi: 10.3788/AOS221914.

     

    马俊, 朱猛, 王才喜等. 2022. 临近空间光电探测技术与发展展望. 空天技术, (2): 85-96, doi: 10.16338/j.issn.2097-0714.20220616.

     

    王煜, 张献中, 吴同等. 2023. 基于最优估计法的瑞利激光雷达反演大气温度研究. 空间科学学报, 43(4): 627-639, doi: 10.11728/cjss2023.04.2022-0035.

     

    武魁军, 吴传航, 胡向瑞等. 2023. 火星O2(a1Δg)气辉高光谱分辨辐射传输特性研究. 地球物理学报, 66(5): 1864-1875, doi: 10.6038/cig2022Q0592.

     

    杨晓君, 王后茂, 李叶飞等. 2021. 基于氧气A波段发射谱线临近空间大气温度的反演及分析. 光谱学与光谱分析, 41(1): 5-10, doi: 10.3964/j.issn.1000-0593(2021)01-0005-06.

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-11-27
修回日期:  2024-02-28
上线日期:  2024-09-10

目录