ISSN 0256-1530

CN 11-1925/O4

  • 1
ZHANG Jie, Laurent LI, ZHOU Tianjun, XIN Xiaoge. 2013: Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations. Adv. Atmos. Sci, 30(6): 1587-1600., https://doi.org/10.1007/s00376-013-2139-7
Citation: ZHANG Jie, Laurent LI, ZHOU Tianjun, XIN Xiaoge. 2013: Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations. Adv. Atmos. Sci, 30(6): 1587-1600., https://doi.org/10.1007/s00376-013-2139-7

Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations

Funds: 

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work was jointly supported by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951903, the National Natural Science Foundation of China under grant Nos. 41205043, 41105054 and 40890054 and China Meteorological Administration (GYHY201306062).

More Information
  • Corresponding author:

    ZHOU Tianjun

  • Received Date: 25 June 2012
  • Revised Date: 04 February 2013
  • The progress made from Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-1 and the northward shift decreased to 2.5. The SPR features a northeast-southwest extended rain belt with a slope of 0.4N/E. The CMIP5 ensemble yielded a smaller slope (0.2N/E), whereas the CMIP3 ensemble featured an unrealistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two thermal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.
  • 1. Chen, H.,T. Zhou,R. B. Neale,X. Wu, and G. J. Zhang,2010:Performance of the new NCAR CAM3. 5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme.J. Climate, 23(13), 3657-3675, doi: 10.1175/2010JCLI3022.1.
    2. Hasumi, H., and S. Emori,2004: K-1 coupled model (MIROC) description, K-1 technical report 1. Tech. Report, CCSR, The University of Tokyo, 34pp.
    3. Hu, Z. Z.,S. Yang, and R. Wu,2003:Long-term climate variations in China and global warming signals.J. Geophys. Res., 108(D19), 4614, doi: 10.1029/2003JD003651.
    4. IPCC,2007:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1009pp.
    5. Kalnay, E., and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull. Amer. Meteor. Soc., 77, 437-471.
    6. Li, J., and L. Zhang,2009:Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models.Climate Dyn., 32, 935-968, doi: 10.1007/s00382-008-0465-8.
    7. Li, J.,Y. Liu, and G. Wu,2009:Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models.Adv. Atmos. Sci., 26(5), 923-939, doi: 10.1007/s00376-009-8111-x.
    8. Liu, Y.,G. Wu, and R. Ren,2004:Relationship between the subtropical anticyclone and diabatic heating.J. Climate, 17(4), 682-698.
    9. Rayner, N.,D. Parker,E. Horton, C. Folland , L. Alexand er,D. Rowell,E. Kent, and A. Kaplan,2003:Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.
    10. Sperber, K. R.,H. Annamalai,I.-S. Kang,A. Kitoh,A. Moise,A. Turner, B. Wang and T. Zhou,2012:The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century.Climate Dyn., 1-34, doi: 10.1007/s00382-012-1607-6.
    11. Taylor, K. E.,2001:Summarizing multiple aspects of model performance in a single diagram.J. Geophys. Res., 106(D7), 7183-7192, doi: 10.1029/2000JD 900719.
    12. Taylor, K. E.,R. J. Stouffer, and G. A. Meehl,2012:An overview of CMIP5 and the experiment design.Bull. Amer. Meteor. Soc., 93, 485-498, doi: http://dx.doi.org/10.1175/BAMS-D-11-00094.1.
    13. Tian, S. F., and T. Yasunari,1998:Climatological aspects and mechanism of spring persistent rains over central China.J. Meteor. Soc. Japan, 76, 57-71.
    14. Uppala, S. M., and Coauthors,2005:The ERA40 re-analysis.Quart. J. Roy. Meteor. Soc., 131(612), 2961-3012, doi: 10.1256/qj.04.176.
    15. Wan, R. J., and G. X. Wu,2007:Mechanism of the spring persistent rains over southeastern China.Science in China (D), 50(1), 130-144, doi: 10.1007/s11430-007-2069-2.
    16. Wan, R. J., and G. X. Wu,2009:Temporal and spatial distributions of the spring persistent rains over southeastern China.Acta Meterologica Sinica, 23 (5), 598-608. (in Chinese)
    17. Wan, R. J.,B. K. Zhao, and G. X. Wu,2009:New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China.Adv. Atmos. Sci., 26(6), 1081-1087, doi: 10.1007/s00376-009-7202-z.
    18. Wang, H. J.,F. Xue, and G. Q. Zhou,2002:The spring monsoon in south china and its relationship to Large-Scale circulation features.Adv. Atmos. Sci., 19(4), 651-664, doi: 10.1007/s00376-002-0005-0.
    19. Xie, P., and P. A. Arkin,1997:Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs.Bull. Amer. Meteor. Soc., 78, 2539-2558.
    20. Xin, X. G.,T. J. Zhou, and Z. X. Li,2011:Regional climate simulation over eastern China in spring by a variable resolution AGCM.Acta Meteorologica Sinica, 69(4), 682-692. (in Chinese)
    21. Xue, Y.,H. Juang,W. Li,S. Prince,R. DeFries,Y. Jiao, and R. Vasic,2004:Role of land surface processes in monsoon development: East Asia and West Africa.J. Geophys. Res., 109, D03105, doi: 10.1029/2003JD003556.
    22. Yanai, M.,C. Li, and Z. Song,1992:Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon.J. Meteor. Soc. Japan, 70(1), 319-350.
    23. Ye, D. Z., and G. X. Wu,1998:The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys., 67(1), 181-198.
    24. Yu, R. C.,W. Li,X. H. Zhang,Y. M. Liu,Y. Q. Yu,H. L. Liu, and T. J. Zhou,2000:Climatic features related to eastern China summer rainfalls in the NCAR CCM3.Adv. Atmos. Sci., 17(4), 503-518, doi: 10.1007/s00376-000-0014-9.
    25. Zhang, J.,T. J. Zhou,R. C. Yu, and X. G. Xin,2009:Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China.Chinese J. Atmos. Sci., 33(1), 121-134. (in Chinese)
    26. Zhou, T. J., and R. C. Yu,2005:Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China.J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.
    27. Zhou, T., and L. Zou,2010:Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation.J. Climate, 23(22), 6009-6026, doi: 10.1175/2010JCLI3546.1.
    28. Zhou, T.,B. Wu, and B. Wang,2009:How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?J. Climate, 22(5), 1159-1173, doi: 10.1175/2008JCLI2245.1.
    29. Zou, L.,T. Zhou,L. Z.-X. Li,J. Zhang,2010:East China summer rainfall variability of 1958-2000: Dynamical downscaling with a variable-resolution AGCM. J. Climate, 23, 6394-6408.
  • Related Articles

  • Cited by

    Periodical cited type(19)

    1. Haonan Zhu, Jie Zhang, Zexuan Xu, et al. Advantages of a variable‐resolution global climate model in reproducing the seasonal evolution of East Asian summer monsoon. International Journal of Climatology, 2022. DOI:10.1002/joc.7796
    2. Jacob Agyekum, Thompson Annor, Emmanuel Quansah, et al. Extreme temperature indices over the Volta Basin: CMIP6 model evaluation. Climate Dynamics, 2022. DOI:10.1007/s00382-022-06503-x
    3. The Process of High-Frequency Intraseasonal Oscillation Associated with a Persistent Rainfall Event over South China. Monthly Weather Review, 2021, 149(12): 4129. DOI:10.1175/MWR-D-21-0138.1
    4. Mateus da Silva Teixeira, Raidel Báez Prieto. Eventos Extremos de Chuva no Estado do Rio Grande do Sul, Brasil, entre 2004 e 2013. Parte 2: Características Sinóticas dos Eventos Persistentes. Revista Brasileira de Meteorologia, 2020, 35(1): 53. DOI:10.1590/0102-7786351028
    5. Liang Zhao, Haiwen Liu, Yamin Hu, et al. Extratropical extended-range precursors near the tropopause preceding persistent strong precipitation in South China: a climatology. Climate Dynamics, 2020, 55(11-12): 3133. DOI:10.1007/s00382-020-05437-6
    6. Yuhan Yan, Congwen Zhu, Boqi Liu, et al. Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere, 2020, 12(1): 24. DOI:10.3390/atmos12010024
    7. Bin Zheng, Yanyan Huang. Mechanisms of Meridional-Propagating High-Frequency Intraseasonal Oscillation Associated with a Persistent Rainfall over South China. Monthly Weather Review, 2018, 146(5): 1475. DOI:10.1175/MWR-D-17-0260.1
    8. Jacob Agyekum, Thompson Annor, Benjamin Lamptey, et al. Evaluation of CMIP5 Global Climate Models over the Volta Basin: Precipitation. Advances in Meteorology, 2018, 2018: 1. DOI:10.1155/2018/4853681
    9. Puxi Li, Tianjun Zhou, Xiaolong Chen. Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Climate Dynamics, 2018, 51(11-12): 4243. DOI:10.1007/s00382-017-3680-3
    10. Chi-Hua Wu, Nicolas Freychet, Chao-An Chen, et al. East Asian presummer precipitation in the CMIP5 at high versus low horizontal resolution. International Journal of Climatology, 2017, 37(11): 4158. DOI:10.1002/joc.5055
    11. Jie Wu, Ying Xu, Xue-Jie Gao. Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models. Advances in Climate Change Research, 2017, 8(3): 176. DOI:10.1016/j.accre.2017.03.001
    12. Sheng Chen, Yudong Tian, Ali Behrangi, et al. Precipitation Spectra Analysis Over China With High-Resolution Measurements From Optimally Merged Satellite/Gauge Observations—Part I: Spatial and Seasonal Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2966. DOI:10.1109/JSTARS.2016.2529003
    13. C. Ring, B. Mannig, F. Pollinger, et al. Uncertainties in the simulation of precipitation in selected regions of humid and dry climate. International Journal of Climatology, 2016, 36(10): 3521. DOI:10.1002/joc.4573
    14. Hao Yang, Zhihong Jiang, Laurent Li. Biases and improvements in three dynamical downscaling climate simulations over China. Climate Dynamics, 2016, 47(9-10): 3235. DOI:10.1007/s00382-016-3023-9
    15. A. G. Koutroulis, M. G. Grillakis, I. K. Tsanis, et al. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dynamics, 2016, 47(5-6): 1881. DOI:10.1007/s00382-015-2938-x
    16. Yiquan Jiang, Xiu-Qun Yang, Xiaohong Liu. Seasonality in anthropogenic aerosol effects on East Asian climate simulated with CAM5. Journal of Geophysical Research: Atmospheres, 2015, 120(20): 10, 837. DOI:10.1002/2015JD023451
    17. Dan-Qing Huang, Jian Zhu, Yao-Cun Zhang, et al. The Impact of the East Asian Subtropical Jet and Polar Front Jet on the Frequency of Spring Persistent Rainfall over Southern China in 1997–2011. Journal of Climate, 2015, 28(15): 6054. DOI:10.1175/JCLI-D-14-00641.1
    18. Huanghe Gu, Zhongbo Yu, Jigan Wang, et al. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble. Advances in Meteorology, 2014, 2014: 1. DOI:10.1155/2014/963196
    19. Tongwen Wu, Rucong Yu, Weiping Li, et al. Development and Evaluation of High Resolution Climate System Models. DOI:10.1007/978-981-10-0033-1_3

    Other cited types(0)

Catalog

    Article views (950) PDF downloads (738) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return