Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton
-
摘要: 秦岭造山带与其南北两侧华北克拉通和扬子克拉通属三大构造单元,不论其各构造单元体还是其界带构造均甚为复杂,并受到多期次构造运动的制约,形成了大陆内部特异的造山过程.尽管在这一地域曾做过大量的地表地质工作和一些相关的地球物理工作,但对其壳、幔精细结构、深层动力过程,特别是同步穿越华北克拉通、秦岭-大巴造山带和扬子克拉通系统的耦合研究甚少.为了研究和探索该地域的壳、幔精细速度结构和其形成的深层过程,专门布置了一条北起榆林,向南经咸阳、宁陕直抵涪陵长达1000 km的高精度地震宽角反射、折射波场探测剖面.通过剖面辖区高分辨率的数据采集,数据处理、反演和壳、幔层、块精细速度结构,发现剖面辖区深部壳、幔结构存在特异的速度和结构变化,并厘定了一系列的新认识.研究结果表明:(1)秦岭—大巴造山带具有同一基底,其形成乃为结晶基底隆升所致,即它的形成仅涉及到上地壳的受力变形和空间状态.造山带与其南、北两侧的前陆盆地为陆内造山过程中同一深层过程的产物,但其沉积速率和形态却不相同.华北克拉通与秦岭造山带之间前陆盆地Bfc拉张为该区Moho界面的局部隆升所致.(2)首次提出了沿1000 km长剖面连续的沉积建造、结晶基底、上地壳、下地壳和上地幔顶部的层、块速度结构和各界面的起伏变化与空间状态.基于地震波边界场响应厘定了华北克拉通、秦岭—大巴造山带和扬子克拉通的分区界带.论述了三大构造单元各自的内部结构和其相邻界域的速度变化特征.(3)该区大陆内部速度结构和不同类型断裂分布及层序在华北克拉通、秦岭—大巴造山带、扬子克拉通三大块体地域存在显著差异.不同规模、层次与产状的断裂分布反映出它们在变形行为和机制上及所受构造运动的制约上均存在明显的差异.Abstract: The three tectonic units, Qinling-Daba orogenic belt, North China craton and Yangtz craton, are very complicated in whether each tectonic unit system or each boundary structure. Restricted by many times of tectonic movements, the Qinling orogen and its adjacent areas have experiencedspecial orogenic processes of continental interior.Although some related work has been done in this area, there are little studies on the fine structure and deep dynamical processesin the crust and mantle and,particularly for the system coupling research of the North China craton, QinLing-Daba orogenic belt and Yangtze craton. In order to fill this gap, we deployeda high-precision wide-angle seismic reflection and refraction wave field exploration survey profile across this region. It began from Yulin north of Ningshan in the north and extended southward to Fuling with a length of 1000 km. Through high-resolution data acquisition,inversion and characterization of the crust and mantle fine velocity structure, we found the specific velocity structure of deep crust and mantle along the profile and obtain the following new knowledge. (1) With the same basement, the Qinling-Daba orogenic belt was resulted from the uplift of the crystalline basement. In other words, the formation of the orogen was only related to the forced deformation and the spatial state of the upper crust. The orogenic belt and its forelands of the both sides were the products of the same deep process in the intracontinental orogenic process, while local uplift of the Moho interface led to the extension of the foreland basin Bfcbetween the North China craton and Qinling orogen. (2)The continuous sedimentary formation, crystalline basement, upper crust, lower crust, interval velocity structure and block velocity structure of uppermost mantle, relief change and space state at each interface are first put forward along the 1000 km long profile.We define the partition zones among the North China craton, Qinling-Daba orogenic belt and Yangtze craton on the basis of the seismic wave boundary response. In this paper, we also discuss internal structures of the three tectonic units and the velocity variation features of the adjacent areas. (3) There are significant differences between the North China craton, Qinling-Daba orogen and Yangtze craton in velocity structure of the continental area, Q structure, distribution of different faults and sequences.The distribution of the faults with varied scales, depths and attitudes displays the marked differencesin theirformation, deformation behavior, mechanisms and constraints by tectonic movements.
-
-
[1] Cao J M, Zhu J S, Wu D C. 1994. Velocity structure of the crust in eastern Qinling mountain. Journal of Chengdu Institute of Technology (in Chinese), 21(1): 11-17.
[2] Cerveny V, Molotkov I A, Psencik I. 1977. Ray Method in Seismology.Prague:University of Karlova.
[3] Cerveny V, Hron F. 1980. The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media. Bulletin of the Seismological Society of America, 70(1): 47-77.
[4] Cerveny V. 1983. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method. Geophysical Journal International, 73(2), 389-426. doi: 10.1111/j.1365-246X.1983.tb03322.x.
[5] Cerveny V. 1984. SEIS83-Numerical modeling of seismic wave fields in 2-D laterally varying layered structures by the ray method. Documentation of Earthquake Algorithms.
[6] Cerveny V, KlimesL. 1984. Synthetic body wave seismograms for three-dimensional laterally varying media. Geophys. J. Int., 79(1): 119-133. doi: 10.1111/j.1365-246X.1984.tb02845.x.
[7] Cerveny V, Klimes L, Psencik I. 1984. Paraxial ray approximations in the computation of seismic wavefields in inhomogeneous media. Geophys. J. Int., 79(1): 89-104,doi: 10.1111/j.1365-246X.1984.tb02843.x.
[8] Cerveny V, Psencik I. 1984. Gaussian beams in elastic 2-D laterally varying layered structures. Geophys. J. Int., 78(1): 65-91,doi: 10.1111/j.1365-246X.1984.tb06472.x.
[9] Chen Y C, Wang P A, Qin K L, et al. 1994. Metallogenic series of main ore deposits and regional metallogeny in the Qinling area. Mineral Deposits (in Chinese), 13(4): 289-297.
[10] Cheng S Y, Zhang G W, Li L. 2003. Lithospheric electrical structure of the Qinling orogen and its geodynamic implication. Chinese J. Geophys. (in Chinese), 46(3): 390-397.
[11] Cloetingh S, Van Balen R T, Voorde MT, et al. 1997. Mechanical aspects of sedimentary basin formation: development of integrated models for lithospheric and surface processes. Geol. Rundsch., 86(2): 226-240.
[12] Fuchs K, Müller G. 1970. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astr. Soc., 23(4): 417-433. doi: 10.1111/j.1365-246X.1971.tb01834.x.
[13] Gao R, Dong S W, He R Z, et al. 2004. Subduction process of the Yangtze continental block from Moho reflection image, South China. Earth Science Frontiers (in Chinese), 11(3): 43-49.
[14] He J K, Liu F T, Liu J H, et al. 1998. The morphology of Moho discontinuity and it’s evolution geodynamics in the eastern Qinling collisional orogenic belt. Chinese J. Geophys. (in Chinese), 41(Suppl): 64-76.
[15] Hole J A. 1992. Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of Geophysical Research: Solid Earth (1978—2012), 97(B5): 6553-6562,doi: 10.1029/92JB00235.
[16] Hu G Z, Teng J W, Ruan X M, et al. 2014. Magnetic anomaly characteristics and crystalline basement variation of the Qinling orogenic belt and its adjacent areas. Chinese J. Geophs. (in Chinese), 57(2): 556-571, doi: 10. 6038/cjg20140220.
[17] Li Q S, Gao R, Wang H Y, et al. 2011. Lithospsheric structure of northeastern Sichuan-Dabashan basin-range system and top-deep deformation coupling. Acta Petrologica Sinica (in Chinese), 27(3): 612-620.
[18] Liu S F, Zhang G W. 2005. Fundamental ideas, contents and methods in study of basin and mountain relationships. Earth Science Frontiers (in Chinese), 12(3): 101-111.
[19] Liu S F, Wang P, Hu M Q, et al. 2010. Evolution and geodynamic mechanism of basin-mountain systems in the northern margin of the Middle-Upper Yangtze. Earth Science Frontiers (in Chinese), 17(3): 14-26.
[20] Mao J W, Zhang Z H, Pei R F. 2012. Mineral Deposit Models in China (in Chinese). Beijing: Geological Publishing House.
[21] Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, Central China. Tectonophysics, 323(3-4): 183-196.
[22] Michel B, Hirn A. 1980. Velocity-depth estimation from wide angle seismicreflection arrivals. Annales de Geophysique,36(1): 107-118.
[23] Quan Y L, Teng J W. 1988. Computation of GB body wave synthetic seismograms by a combined method. Acta Geophysica Sinica (in Chinese),31(2): 165-175.
[24] Schmid R, Ryberg T, Ratschbacher L, et al. 2001. Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data. Tectonophysics, 333(3-4): 347-359.
[25] Teng J W. 1963. Dynamic characteristics of the high frequency seismic reflection wave propagation in the actual fault medium. Chinese J. Geophys. (in Chinese), 12(2): 166-178.
[26] Teng J W, Wang S Z, Yao Z X, et al. 1980. Characteristics of the geophysical fields and plate-tectonics of the Qinghai-Xizang plateau and its neighboring reginos. Acta Geophysica Sinica, 23(3), 254-268.
[27] Teng J W. 2001. The exchange of substonce and energy, different sphere coupling and deep dynamical process within the earth. Earth Science Frontiers (in Chinese), 8(3): 1-8.
[28] Teng J W, Zhang Z J, Bai W M, et al. 2004. Physics of the Lithosphere (in Chinese). Beijing: Science Press.
[29] VidaleJ. 1988. Finite-difference calculationof traveltimes. Bull. Seis. Soc. Am., 78(6):2062-2076.
[30] Teng J W. 2005. The exchange of substance and energy and dynamic process in the earth interior. // Li X X. 100 Interdisciplinary Science Puzzles of the 21st Century (in Chinese). Beijing: Science Press,327-344.
[31] Teng J W, Yan Y F, Wang G J, et al. 2006. Structure of Earth's crust and upper mantle, inland subduction and its coupling effects on the Dabie orogenic belt and the Tancheng-Lujiang fault zone. Chinese J. Geophys. (in Chinese), 49(2): 449-457.
[32] Teng J W, Yao J J, Jiang CZ, et al. 2009. Magmatic rock mass and information for large and superlarge mineral deposits and its ore-prospecting effect in deep crust. Acta Petrologica Sinica (in Chinese), 25(5): 1009-1038.
[33] Teng J W, Yang H, Zhang X M. 2010. Development direction and task of the geodynamical research in China. Acta Petrologica Sinica (in Chinese),26(11): 3159-3176.
[34] Teng J W, Li S L, Zhang Y Q, et al. 2014. Seismic wave fields and dynamical response for Qinling orogen and sedimentary basins and crystalline basement. Chinese J. Geophys. (in Chinese), 57(3): 770-788,doi: 10.6038/cjg20140308.
[35] Wang C Y, Han W B, Wu J P, et al. 2003. Crustal structure beneath the Songpan-Ganze orogenic belt. Acta Seismologica Sinica (in Chinese), 25(3): 229-241.
[36] Wang Z Q, Yan Q R, Yan Z, et al. 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica (in Chinese), 83(11): 1527-1546.
[37] Xiao A C, Wei G Q, Shen Z Y, et al. 2011. Basin-mountain system and tectonic coupling between Yangtze block and South Qinling orogen. Acta Petrologica Sinica (in Chinese), 27(3): 601-611.
[38] Yuan X C, Xu M C, Tang W B, et al. 1994. Eastern Qinling seismic reflection profiling. Chinese J. Geophys. (in Chinese), 37(6): 749-758.
[39] Zhang B R, Gao S, Han Y W. 2002. Geochemistry of Qinling Orogen (in Chinese). Beijing: Science Press.
[40] Zhang G W, Zhang B R, Yuan X C. 2001. QinlingOrogenicBelt and Continental Dynamics (in Chinese). Beijing: Science Press.
[41] Zhang G W, Dong Y P, Lai S C, et al. 2003. The Mian Lue Suture Zone in the south Qinling-Dabie Orofenic Belt. Science in China(Series D) (in Chinese), 33(12): 1174-1183.
[42] Zhang G W, Cheng S Y, Guo A L, et al. 2004. Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie—with a discussion of the assembly of the main part of the continent of China. Geological Bulletin of China (in Chinese),23(9-10): 846-853.
[43] Zhu L M, Zhang G W, Guo B, et al. 2008. Main geological events, genetic types of metallic deposits and their geodynamical setting in the Qinling orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 27(4): 384-390.
[44] Тэн Цзи вэнь, идр. 1961. Изугение Динамаческих особенности многократныхотра(енныхволн. ОтчетработахФонд, ИФЗ. АН. СССР.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0