New research progress in geophysics and continental dynamics of the Tibetan Plateau
-
摘要:
岩石圈地球物理探测、深部结构成像与各向异性等研究是青藏高原大陆动力学研究的基础.近年来,随着深部地球物理探测技术和反演成像技术的进步,信息提取与细节分辨能力不断提升,青藏高原壳幔结构、碰撞和隆升动力学、资源与地质灾害的深部机制等研究进展显著.本专辑收录33篇论文,主要分布在深部结构与地球物理探测、地震各向异性与变形、断裂性质与地震活动等三个主要研究领域.本文重点围绕这些论文,对近年来青藏高原地球物理研究进展进行综述.
Abstract:Lithospheric geophysical exploration, structural imaging and anisotropy are the basis for the study of continental dynamics of the Tibetan Plateau. In recent years, with the advancement of deep geophysical exploration technology and inversion imaging technology, and the continuous improvement of information recognition and resolution, researches on crust-mantle structure, dynamics of collision and uplift, and deep mechanics of resource and geological hazards in the Tibetan Plateau have made remarkable progress. The 33 papers in this special issue are mainly distributed in three major research fields, i.e. the deep structure and geophysical exploration, the seismic anisotropy and deformation, the fault and seismicity. Based on the papers in this special issue, this review makes comments on research progress of geophysics of the Tibetan Plateau.
-
Key words:
- Tibetan Plateau /
- Geophysical exploration /
- Crust-upper mantle structure /
- Deep tectonics /
- Deformation /
- Fault /
- Earthquake
-
-
Bai D, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5):358-362. doi: 10.1038/ngeo830
Barazangi M, Ni J. 1982. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau:possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 10(4):179-185, doi:10.1130/0091-7613.
Ben-Zion Y, Peng Z, Okaya D, et al. 2003. A shallow zone structure illuminated by trapped waves in the Karadere-Duze branch of the North Anatolian Fault, western Turkey. Geophysical Journal International, 152(3):699-717. doi: 10.1046/j.1365-246X.2003.01870.x
Chen Y, Li W, Yuan X, et al. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth and Planetary Science Letters, 413:13-24, doi:10.1016/j.epsl.2014.12.041.
Chen Y F, Chen J H, Guo B, et al. 2020. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos. Chinese Journal of Geophysics (in Chinese), 63(3):886-896, doi:10.6038/cjg2020N0211.
Cheng J, Xu X W, Chen G H. 2020. A new prediction model of seismic hazard for the Sichuan-Yunnan region based on the occurrence rate of large earthquakes. Chinese Journal of Geophysics (in Chinese), 63(3):1170-1182, doi:10.6038/cjg2020N0204.
Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1):59-77. doi: 10.1016/j.wavemoti.2004.05.006
Clark M K, Bush J W M, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophysical Journal International, 162(2):575-590. doi: 10.1111/j.1365-246X.2005.02580.x
Diao F, Wang R, Wang Y, et al. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth and Planetary Science Letters, 495:202-212. doi: 10.1016/j.epsl.2018.05.020
Diao F, Xiong X, Wang R, et al. 2019. Slip Rate Variation Along the Kunlun Fault (Tibet):Results From New GPS Observations and a Viscoelastic Earthquake-Cycle Deformation Model. Geophysical Research Letters, 46(5):2524-2533. doi: 10.1029/2019GL081940
Dong L, Shen X Z, Qian Y P. 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):915-927, doi:10.6038/cjg2020N0168.
Dong P Y, Shi Y L, Cheng H H, et al. 2020. Numerical analysis of the future seismic hazards in the Tibetan Plateau and its surrounding area. Chinese Journal of Geophysics (in Chinese), 63(3):1155-1169, doi:10.6038/cjg2020N0310.
Dong S W, Li T D. 2009. SinoProbe:the exploration of the deep interior beneath the Chinese continent. Acta Geologica Sinica (in Chinese), 83(7):895-909. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200907001
Dong S W, Li T D, Chen X H, et al. 2012. Progress of deep exploration in mainland China:a review. Chinese Journal of Geophysics (in Chinese), 55(12):3884-3901, doi:10.6038/j.issn.0001-5733.2012.12.002.
Feng S Y, Li Q S, Deng X J, et al. 2020. Crustal skeleton structure of the lateral collision zone of the Qinghai-Tibet Plateau revealed by large-shot set of deep-reflecting profiling. Chinese Journal of Geophysics (in Chinese), 63(3):828-839, doi:10.6038/cjg2020N0271.
Fu Y V, Gao Y, Li A, et al. 2015. Lithospheric shear wave velocity and radial anisotropy beneath the northern part of North China from surface wave dispersion analysis. Geochemistry, Geophysics, Geosystems, 16:2619-2636, doi:10.1002/2015GC005825.
Fu Y V, Li A. 2015. Crustal shear wave velocity and radial anisotropy beneath the Rio Grande rift from ambient noise tomography. Journal of Geophysical Research:Solid Earth, 120:1005-1019, doi:10.1002/2014JB011602.
Fu Y Y, Xiao Z. 2020. Ambient noise tomography of Rayleigh and Love wave in Northeast Tibetan plateau and adjacent regions. Chinese Journal of Geophysics (in Chinese), 63(3):860-870, doi:10.6038/cjg2020N0239.
Gan W, Zhang P, Shen Z, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research:Solid Earth, 112:B08416, doi:10.1029/2005JB004120. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2005JB004120/
Gao R, Chen C, Lu Z W, et al. 2013. New constraints on crustal structure and Moho topography in central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606:160-170, doi:10.1016/j.tecto.2013.08.006.
Gao R, Lu Z W, Klemperer S L, et al. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7):555-560. doi: 10.1038/ngeo2730
Gao Y, Wu Z, Liu Z, et al. 2000. Seismic source characteristics of nine strong earthquakes from 1988 to 1990 and earthquake activity since 1970 in the Sichuan-Qinghai-Xizang (Tibet) zone of China. Pure and Applied Geophysics, 157(9):1423-1443. doi: 10.1007/PL00001127
Gao Y, Crampin S. 2004. Observations of stress relaxation before earthquakes. Geophysical Journal International, 157(2):578-582. doi: 10.1111/j.1365-246X.2004.02207.x
Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China:preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31):3599-3605. doi:10.1007/s11434-010-4135-y.
Gao Y, Wu J, Fukao Y, et al. 2011. Shear wave splitting in the crust in North China:stress, faults and tectonic implications. Geophysical Journal International, 187(2):642-654. doi: 10.1111/j.1365-246X.2011.05200.x
Gao Y, Shi Y T, Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake. Chinese Science Bulletin (in Chinese), 63(19):1934-1948, doi:10.1360/N972018-00317.
Gao Y, Chen A G, Shi Y T. et al. 2019. Preliminary analysis of crustal shear-wave splitting in Sanjiang lateral collision zone of the SE margin of the Tibetan Plateau and its tectonic implications. Geophysical Prospecting, 67:2432-2449, doi:10.1111/1365-2478.12870.
Gao Y, Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances. Chinese Journal of Geophysics (in Chinese), 63(3):802-816, doi:10.6038/cjg2020O0033.
Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3):599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
Gong M, Xu X W, Li K. 2020. Fault geometry responsible for the initial rupture process of Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 63(3):1224-1234, doi:10.6038/cjg2020N0255.
Guo T L, Gao Y. 2020. Seismic anisotropy in the upper crust within Tibetan Plateau revealed by shear-wave splitting. Chinese Journal of Geophysics (in Chinese), 63(3):1085-1103, doi:10.6038/cjg2020N0156.
Hu M Z, Jin T Y, Hao H T, et al. 2020. Lithospheric effective elastic thickness and its tectonics in the southeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):969-987, doi:10.6038/cjg2020N0225.
Huang L T, Shen X Z, Zheng W J, et al. 2020. Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication. Chinese Journal of Geophysics(in Chinese), 63(3):871-885, doi:10.6038/cjg2020N0210.
Huang Y L, Liang C T, Wu J, et al. 2020. The seismicity in the southern Longmenshan fault zone based on a dense seismic array. Chinese Journal of Geophysics (in Chinese), 63(3):1183-1196, doi:10.6038/cjg2020N0227.
Huang Z, Su W, Peng Y, et al. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research, 108(B2):2073, doi:10.1029/2001JB001696. http://d.old.wanfangdata.com.cn/Periodical/dzdz201901001
Jian H Z, Wang L F, Ren Z K, et al. 2020. Present-day slip rate and interseismic fault coupling along the Elashan fault using GPS. Chinese Journal of Geophysics (in Chinese), 63(3):1127-1142, doi:10.6038/cjg2020N0229.
Jordan T A, Watts A B. 2005. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth and Planetary Science Letters, 236:732-750, doi:10.1016/j.epsl.2005.05.036.
Kind R, Ni J, Zhao W, et al. 1996. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science, 274(5293):1692-1694. doi: 10.1126/science.274.5293.1692
Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet:Evidence for Eurasian plate subduction. Science, 298(5596):1219-1221. doi: 10.1126/science.1078115
Kind R, Yuan X H. 2010. Seismic images of the biggest crash on Earth. Science, 329(5998):1479-1480. doi: 10.1126/science.1191620
Kosarev G, Kind R, Sobolev S V, et al. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283 (5406):1306-1309. doi: 10.1126/science.283.5406.1306
Li B C, Zhang L T, Ye G F, et al. 2020. Upper mantle thermal structure beneath the eastern margin of the Tibetan Plateau inferred from electrical structure model. Chinese Journal of Geophysics (in Chinese), 63(3):1043-1055, doi:10.6038/cjg2020N0234.
Li G H, Bai L, Ding L, et al. 2020. Source parameters of the 2019 MS6.3 Medog earthquake and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 63(3):1214-1223, doi:10.6038/cjg2020N0231.
Li Y D, Zheng Y, Xiong X, et al. 2013. Lithospheric effective elastic thickness and its anisotropy in the northeast Qinghai-Tibet plateau. Chinese Journal of Geophysics (in Chinese), 56(4):1132-1145, doi:10.6038/cjg20130409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201304009
Li Y G, Leary P G. 1990. Fault zone trapped seismic waves. Bulletin of the Seismological Society of America, 80(5):1245-1271. http://d.old.wanfangdata.com.cn/Periodical/hbdzkx201403001
Li Z F, Peng Z G. 2016. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault. Geophysical Journal International, 205(3):1326-1341. doi: 10.1093/gji/ggw082
Liu C, Yao H, Yang H Y, et al. 2019. Direct inversion for the three-dimensional shear wave speed azimuthal anisotropy based on surface-wave ray tracing:methodology and application to Yunnan, southwest China. Journal of Geophysical Research, 124, doi:10.1029/2018JB016920.
Liu G N, Wang Z. 2020. Correlations of the deep structural characteristics, tidal stress variation and earthquake initiation along the Xianshuihe-Anninghe fault zone. Chinese Journal of Geophysics (in Chinese), 63(3):928-943, doi:10.6038/cjg2020N0206.
Liu Q Y, van der Hilst R D, Li Y, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7:361-365, doi:10.1038/ngeo2130.
Liu X X, Shao Z G. 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone. Chinese Journal of Geophysics (in Chinese), 63(3):1117-1126, doi:10.6038/cjg2020N0228.
Liu Y, Zhang H, Zhang X, et al. 2015. Anisotropic upper crust above the aftershock zone of the 2013 MS7.0 Lushan earthquake from the shear wave splitting analysis. Geochemistry, Geophysics, Geosystems, 16(10):3679-3696. doi: 10.1002/2015GC005972
Lu Z W, Gao R, Li Q S, et al. 2009. Testing deep seismic reflection profiles across the central uplift of the Qiangtang terrane in the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 52(8):2008-2014, doi:10.3969/j.issn.0001-5733.2009.08.008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200908008
Luo S, Yu C Q, Zhang G, et al. 2020. Deep electrical resistivity structure of the Sanjiang Area, western Yunnan:An example of the Fugong-Qiaojia profile. Chinese Journal of Geophysics (in Chinese), 63(3):1026-1042, doi:10.6038/cjg2020N0195.
Nábělek J, Hetényi G, Vergne J, et al. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946):1371-1374. doi: 10.1126/science.1167719
Nelson K D, Zhao W, Brown L D, et al. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results. Science, 274(5293):1684-1688. doi: 10.1126/science.274.5293.1684
Pan Z Y, Shao Z G, Zhou Y, et al. 2020. Present-day crustal deformation of the Pamir constrained by the GPS strain rate, seismic strain rate and earthquake focal stress. Chinese Journal of Geophysics (in Chinese), 63(3):1143-1154, doi:10.6038/cjg2020N0161.
Pei S P, Xu Z H, Wang S Y. 2004. Sn wave tomography in the uppermost mantle beneath the China continent and adjacent regions. Chinese Journal of Geophysics (in Chinese), 47(2):250-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.483
Qu C, Xu Y, Yang W C, et al. 2020. P-wave velocity imaging and lithosphere structure of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 63(3):847-859, doi:10.6038/cjg2020N0107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90de9e8794a87eec01ac6d9f004258a6
Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313):788-790. doi: 10.1126/science.276.5313.788
Shan B, Xiong X, Wang R, et al. 2013. Coulomb stress evolution along Xianshuihe-Xiaojiang fault system since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377-378:199-210, doi:10.1016/j.epsl.2013.06.044.
Shi Y, Gao Y, Shen X, et al. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault. Tectonophysics, 774, doi:10.1016/j.tecto.2019.228274.
Su W, Peng Y J, Zheng Y J, et al. 2002. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and adjacent areas. Acta Geoscientia Sinica (in Chinese), 23(3):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200203001
Sun Y, Niu F, Liu H, et al. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth and Planetary Science Letters, 349-350:186-197, doi:10.1016/j.epsl.2012.07.007.
Tang H H, Guo L H, Fang Y. 2020. Estimation of heat flow in southeastern margin of Tibetan Plateau and its analysis of the correlation with earthquake activity. Chinese Journal of Geophysics (in Chinese), 63(3):1056-1069, doi:10.6038/cjg2019N0045.
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547):1671-1677. doi: 10.1126/science.105978
Teng J, Wei S, Sun K, et al. 1987. The characteristics of the seismic activity in the Qinghai-Xizang (Tibet) Plateau of China. Tectonophysics, 134(1-3):129-144. doi: 10.1016/0040-1951(87)90253-8
Teng J W, Ruan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrologica Sinica (in Chinese), 28(12):4077-4100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212022
Teng J, Zhang Z, Zhang X, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 609:202-216. doi: 10.1016/j.tecto.2012.11.024
Teng J W, Yang D H, Tian X B, et al. 2019. Geophysical investigation progresses of the Qinghai-Tibetan Plateau in the past 70 years. Scientia Sinica Terrae (in Chinese), 49:1546-1564, doi:10.1360/SSTe-2019-0132.
Trampert J, van Heijst H J. 2002. Global azimuthal anisotropy in the transition zone. Science, 296(5571):1297-1299. doi: 10.1126/science.1070264
Wang C L, Liang C T, Deng K, et al. 2018. Spatiotemporal distribution of microearthquakes and implications around the seismic gap between the Wenchuan and Lushan Earthquakes. Tectonics, 37(8):2695-2709. doi: 10.1029/2018TC005000
Wang H F, Wu J P, Zhou S Y, et al. 2020. Rayleigh wave azimuthal anisotropy in the Southeastern Tibetan Plateau from Eikonal tomography. Chinese Journal of Geophysics (in Chinese), 63(3):1070-1084, doi:10.6038/cjg2020N0104.
Wang H Y, Gao R, Yin A, et al. 2012. Deep structure geometry features of Haiyuan Fault and deformation of the crust revealed by deep seismic reflection profiling. Chinese Journal of Geophysics (in Chinese), 55(12):3902-3909, doi:10.6038/j.issn.0001-5733.2012.12.003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201212003
Wang J Y, Huang S P. 1990. Compilation of heat flow data in the China continental area (2nd edition). Seismology and Geology (in Chinese), 12(4):351-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.180
Wang Q, Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau. Science China:Earth Sciences(in Chinese). 44(11):2440-2450, doi:10.1007/s11430-014-4908-2.
Wang Q, Niu F, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1):167-179. doi: 10.1093/gji/ggv420
Wang X B, Yu N, Gao S, et al. 2017.Research progress on electrical structure of the crust and upper mantle beneath the eastern margin of Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 60(6):2350-2370, doi:10.6038/cjg20170626.
Wang X, Jiang W L, Zhang J F, et al. 2020. Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):988-1001, doi:10.6038/cjg2020N0219.
Wu J, Zhang Z, Kong F, et al. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth and Planetary Science Letters, 413:167-175, doi:10.1016/j.epsl.2015.01.002.
Wu C, Tian X, Xu T, et al. 2019. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere:new evidence based on shear wave splitting measurements. Earth and Planetary Science Letters, 514:75-83, doi:10.1016/j.epsl.2019.02.037.
Wu Y, Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes. Earth and Planetary Physics, 3(5):425-434. doi: 10.26464/epp2019044
Wu G J, Tan H B, Sun K, et al. 2020. Characteristics and tectonic significance of gravity anomalies in the Helanshan-Yinchuan Graben and adjacent areas. Chinese Journal of Geophysics (in Chinese), 63(3):1002-1013, doi:10.6038/cjg2020N0233.
Wu P, Gao Y, Chen A G, et al. 2020. Preliminary study on the anisotropy of the upper crust in the Sanjiang area, southeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):1104-1116, doi:10.6038/cjg2020N0232.
Xiao Z, Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography. Chinese Journal of Geophysics (in Chinese), 60(6):2213-2225, doi:10.6038/cjg20170615.
Xin H L, Zeng X W, Kang M, et al. 2020. Crustal fine velocity structure of the Haiyuan arcuate tectonic zone from double-difference tomography. Chinese Journal of Geophysics (in Chinese), 63(3):897-914, doi:10.6038/cjg2020N0067.
Xiong X, Shan B, Zheng Y, et al. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 482:216-225, doi:10.1016/j.tecto.2009.07.020.
Xu Y R, Du P, Li W Q, et al. 2020. A case study on AD 1718 Tongwei M7.5 earthquake triggered landslides-Application of landslide database triggered by historical strong earthquakes on the Loess Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):1235-1248, doi:10.6038/cjg2020N0146.
Yang G L, Shen C Y, Li Z J, et al. 2020. Gravity isostasy and effective elastic thickness of the eastern Bayan Har block and adjacent areas. Chinese Journal of Geophysics (in Chinese), 63(3):956-968, doi:10.6038/cjg2020N0221.
Yang W, Wang B S, Peng Z G, et al. 2020. The structure feature of step-over basin along Garzê-Yushu Fault from analysis of fault zone head wave. Chinese Journal of Geophysics (in Chinese), 63(3):1197-1213, doi:10.6038/cjg2020N0256.
Yang W C, Hou Z Z, Yu C Q. 2015. The three dimensional density structures of Qinghai-Tibet Plateau and crustal mass movement. Chinese Journal of Geophysics (in Chinese), 58(11):4223-4234, doi:10.6038/cjg20151128.
Yang W C, Qu C, Ren H R, et al. 2019. The asthenosphere of the Qinghai-Xizang (Tibetan) Plateau and subduction of the Tethys Ocean. Geological Review (in Chinese), 65(3):521-532, doi:10.16509/j.georeview.2019.03.001.
Yang W C, Jin S, Zhang L L, et al. 2020. The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 63(3):817-827, doi:10.6038/cjg2020N0197.
Yao H, van der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research, 115:B12307, doi:10.1029/2009JB007142.
Ye Z, Gao R, Li Q S, et al. 2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth. Earth and Planetary Science Letters, 426:109-117, doi:10.1016/j.epsl.2015.06.024.
Yi G X, Yao H J, Zhu J S, et al. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy. Chinese Journal of Geophysics (in Chinese), 53(2):256-268, doi:10.3969/j.issn.0001-5733.2010.02.004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.1479
Yu Y, Xu X, Gao R, et al. 2020. Seismic evidence for tectonic affinity of the Yungbwa ophiolitic complex, Western Tibet. Chinese Journal of Geophysics (in Chinese), 63(3):840-846, doi:10.6038/cjg2020N0220.
Yuan X, Ni J, Kind R, et al. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research, 102(B12):27491-27500. doi: 10.1029/97JB02379
Zeng Q, Chu R S, Sheng M H, et al. 2020. Seismic ambient noise tomography for shallow velocity structures beneath Weiyuan, Sichuan. Chinese Journal of Geophysics (in Chinese), 63(3):944-955, doi:10.6038/cjg2020N0177.
Zhang H, Thurber C H. 2003. Double-difference tomography:the method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5):1875-1889. doi: 10.1785/0120020190
Zhang Z J, Deng Y F, Teng J W, et al. 2011. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4):977-989. doi: 10.1016/j.jseaes.2010.03.010
Zhao G Z, Chen X, Wang L, et al. 2008. Evidence of crustal 'channel flow' in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin, 53(12):1887-1893. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e200812015
Zhao J M, Mooney W D, Zhang X K, et al. 2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan plateau and tectonic implications. Earth and Planetary Science Letters, 241(3-4):804-814. doi: 10.1016/j.epsl.2005.11.003
Zhao J M, Yuan X H, Liu H B, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11229-11233. doi: 10.1073/pnas.1001921107
Zhao L Q, Zhan Y, Wang Q L, et al. 2020. The deep electrical structure and seismogenic background of Lenglongling uplift and its adjacent areas in the eastern end of Qilian Mountains. Chinese Journal of Geophysics (in Chinese), 63(3):1014-1025, doi:10.6038/cjg2020N0257.
Zhao W J, Nelson K D, Che J, et al. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366:557-559, doi:10.1038/366557a0.
Zhao W J, Mechie J, Brown L D, et al. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International, 145(2):486-498. doi: 10.1046/j.0956-540x.2001.01402.x
Zhao W J, Kumar P, Mechie J, et al. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4:870-873, doi:10.1038/ngeo1309.
Zhou H, Murphy M A. 2005. Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau. Journal of Asian Earth Sciences, 25(3):445-457. doi: 10.1016/j.jseaes.2004.04.007
陈一方, 陈九辉, 郭飚等. 2020.鄂尔多斯西缘北段的地壳结构和块体间变形关系.地球物理学报, 63(3):886-896, doi:10.6038/cjg2020N0211. http://www.geophy.cn//CN/abstract/abstract15366.shtml
程佳, 徐锡伟, 陈桂华. 2020.基于特大地震发生率的川滇地区地震危险性预测新模型.地球物理学报, 63(3):1170-1182, doi:10.6038/cjg2020N0204. http://www.geophy.cn//CN/abstract/abstract15386.shtml
董蕾, 沈旭章, 钱银苹. 2020.青藏高原东南缘Moho面速度密度跃变研究.地球物理学报, 63(3):915-927, doi:10.6038/cjg2020N0168. http://www.geophy.cn//CN/abstract/abstract15368.shtml
董培育, 石耀霖, 程惠红等. 2020.青藏高原及邻区未来地震活动性趋势数值分析.地球物理学报, 63(3):1155-1169, doi:10.6038/cjg2020N0310. http://www.geophy.cn//CN/abstract/abstract15385.shtml
董树文, 李廷栋.2009.SinoProbe——中国深部探测实验.地质学报, 83(7):895-909. doi: 10.3321/j.issn:0001-5717.2009.07.001
董树文, 李廷栋, 陈宣华等.2012.我国深部探测技术与实验研究进展综述.地球物理学报, 55(12):3884-3901, doi:10.6038/j.issn.0001-5733.2012.12.002. http://www.geophy.cn//CN/abstract/abstract9084.shtml
酆少英, 李秋生, 邓小娟等. 2020.深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构.地球物理学报, 63(3):828-839, doi:10.6038/cjg2020N0271. http://www.geophy.cn//CN/abstract/abstract15361.shtml
付媛媛, 肖卓. 2020.青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像.地球物理学报, 63(3):860-870, doi:10.6038/cjg2020N0239. http://www.geophy.cn//CN/abstract/abstract15364.shtml
高原, 石玉涛, 陈安国. 2018.青藏东缘地震各向异性、应力及汶川地震影响.科学通报, 63(19):1934-1948. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201819010.htm
高原, 石玉涛, 王琼. 2020.青藏高原东南缘地震各向异性及其深部构造意义.地球物理学报, 63(3):802-816, doi:10.6038/cjg2020O0033. http://www.geophy.cn//CN/abstract/abstract15359.shtml
宫猛, 徐锡伟, 李康. 2020.汶川MW7.9地震起始破裂断层几何结构.地球物理学报, 63(3):1224-1234, doi:10.6038/cjg2020N0255. http://www.geophy.cn//CN/abstract/abstract15390.shtml
郭铁龙, 高原. 2020.剪切波分裂揭示的青藏高原上地壳地震各向异性基本特征.地球物理学报, 63(3):1085-1103, doi:10.6038/cjg2020N0156. http://www.geophy.cn//CN/abstract/abstract15380.shtml
胡敏章, 金涛勇, 郝洪涛等. 2020.青藏高原东南缘岩石圈有效弹性厚度及其构造意义.地球物理学报, 63(3):969-987, doi:10.6038/cjg2020N0225. http://www.geophy.cn//CN/abstract/abstract15372.shtml
黄柳婷, 沈旭章, 郑文俊等. 2020.远震接收函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义.地球物理学报, 63(3):871-885, doi:10.6038/cjg2020N0210. http://www.geophy.cn//CN/abstract/abstract15365.shtml
黄焱羚, 梁春涛, 吴晶等. 2020.基于密集台阵研究龙门山断裂带南段地震空段的地震活动性.地球物理学报, 63(3):1183-1196, doi:10.6038/cjg2020N0227. http://www.geophy.cn//CN/abstract/abstract15387.shtml
简慧子, 王丽凤, 任治坤等. 2020.基于GPS速度场研究鄂拉山断裂现今滑动速率和闭锁状态.地球物理学报, 63(3):1127-1142, doi:10.6038/cjg2020N0229. http://www.geophy.cn//CN/abstract/abstract15383.shtml
李宝春, 张乐天, 叶高峰等. 2020.基于电性结构模型的青藏高原东缘上地幔热结构研究.地球物理学报, 63(3):1043-1055, doi:10.6038/cjg2020N0234. http://www.geophy.cn//CN/abstract/abstract15377.shtml
李国辉, 白玲, 丁林等. 2020. 2019年西藏墨脱MS6.3地震震源参数及其构造意义.地球物理学报, 63(3):1214-1223, doi:10.6038/cjg2020N0231. http://www.geophy.cn//CN/abstract/abstract15389.shtml
李永东, 郑勇, 熊熊等. 2013.青藏高原东部部岩石圈有效弹性厚度及其各向异性.地球物理学报, 56(4):1132-1145, doi:10.6038/cjg20130409.
刘冠男, 王志. 2020.鲜水河-安宁河断裂带深部构造特征、固体潮应力变化与地震触发相关性研究.地球物理学报, 63(3):928-943, doi:10.6038/cjg2020N0206. http://www.geophy.cn//CN/abstract/abstract15369.shtml
刘晓霞, 邵志刚. 2020.丽江-小金河断裂带现今断层运动特征.地球物理学报, 63(3):1117-1126, doi:10.6038/cjg2020N0228. http://www.geophy.cn//CN/abstract/abstract15382.shtml
卢占武, 高锐, 李秋生等. 2009.横过青藏高原羌塘中央隆起区的深反射地震试验剖面.地球物理学报, 52(8):2008-2014, doi:10.3969/j.issn.0001-5733.2009.08.008.
罗愫, 于常青, 张刚. 2020.滇西三江构造带电性结构特征——以福贡-巧家剖面为例.地球物理学报, 63(3):1026-1042, doi:10.6038/cjg2020N0195. http://www.geophy.cn//CN/abstract/abstract15376.shtml
潘正洋, 邵志刚, 周云等. 2020.基于GPS应变、地震应变率与震源应力场对帕米尔高原现今构造变形特征的分析.地球物理学报, 63(3):1143-1154, doi:10.6038/cjg2020N0161. http://www.geophy.cn//CN/abstract/abstract15384.shtml
裴顺平, 许忠淮, 汪素云. 2004.中国大陆及邻近地区上地幔顶部Sn波速度层析成像.地球物理学报, 47(2):250-256. doi: 10.3321/j.issn:0001-5733.2004.02.011
苏伟, 彭艳菊, 郑月军等. 2002.青藏高原及其邻区地壳上地幔S波速度结构.地球学报, 23(3):193-200. doi: 10.3321/j.issn:1006-3021.2002.03.001
瞿辰, 胥颐, 杨文采等. 2020.青藏高原P波速度层析成像与岩石圈结构.地球物理学报, 63(3):847-859, doi:10.6038/cjg2020N0107. http://www.geophy.cn//CN/abstract/abstract15363.shtml
唐晗晗, 郭良辉, 方圆. 2020.青藏高原东南缘热流估算及与地震活动相关性分析.地球物理学报, 63(3):1056-1069, doi:10.6038/cjg2019N0045. http://www.geophy.cn//CN/abstract/abstract15378.shtml
滕吉文, 阮小敏, 张永谦等.2012.青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹.岩石学报, 28(12):4077-4100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212022
滕吉文, 杨顶辉, 田小波等.2019.青藏高原深部地球物理探测70年.中国科学:地球科学, 49(10):1546-1564, doi:10.1360/SSTe-2019-0132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201910004
王海燕, 高锐, 尹安等. 2012.深地震反射剖面揭示的海原断裂深部几何形态与地壳形变.地球物理学报, 55(12):3902-3909, doi:10.6038/j.issn.0001-5733.2012.12.003.
王怀富, 吴建平, 周仕勇等. 2020.青藏高原东南缘基于程函方程的面波方位各向异性研究.地球物理学报, 63(3):1070-1084, doi:10.6038/cjg2020N0104. http://www.geophy.cn//CN/abstract/abstract15379.shtml
汪集旸, 黄少鹏. 1990.中国大陆地区热流数据汇编(第二版).地震地质, 12(4):351-366. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200105005
王琼, 高原. 2014.青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动.中国科学:地球科学, 44(11):2440-2450, doi:10.1007/s11430-014-4908-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201411008
王鑫, 姜文亮, 张景发等. 2020.青藏高原东北缘重力场深部结构及其动力学特征.地球物理学报, 63(3):988-1001, doi:10.6038/cjg2020N0219. http://www.geophy.cn//CN/abstract/abstract15373.shtml
王绪本, 余年, 高嵩等.2017.青藏高原东缘地壳上地幔电性结构研究进展.地球物理学报, 60(6):2350-2370, doi:10.6038/cjg20170626. http://www.geophy.cn//CN/abstract/abstract13778.shtml
吴桂桔, 谈洪波, 孙凯等. 2020.贺兰山-银川地堑及邻区重力异常特征及构造意义.地球物理学报, 63(3):1002-1013, doi:10.6038/cjg2020N0233. http://www.geophy.cn//CN/abstract/abstract15374.shtml
吴鹏, 高原, 陈安国等. 2020.青藏高原东南缘三江地区上地壳各向异性初步研究.地球物理学报, 63(3):1104-1116, doi:10.6038/cjg2020N0232. http://www.geophy.cn//CN/abstract/abstract15381.shtml
肖卓, 高原. 2017.利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构.地球物理学报, 60(6):2213-2225. doi:10.6038/cjg20170615. http://www.geophy.cn//CN/abstract/abstract13767.shtml
莘海亮, 曾宪伟, 康敏等. 2020.海原弧形构造区地壳三维精细速度结构成像.地球物理学报, 63(3):897-914, doi:10.6038/cjg2020N0067. http://www.geophy.cn//CN/abstract/abstract15367.shtml
徐岳仁, 杜朋, 李文巧等. 2020. 1718年通渭M7.5地震滑坡特征分析——黄土高原历史强震触发滑坡数据库的应用.地球物理学报, 63(3):1235-1248, doi:10.6038/cjg2020N0146. http://www.geophy.cn//CN/abstract/abstract15391.shtml
杨光亮, 申重阳, 黎哲君等. 2020.巴颜喀拉地块东部及邻区重力均衡与岩石圈有效弹性厚度.地球物理学报, 63(3):956-968, doi:10.6038/cjg2020N0221. http://www.geophy.cn//CN/abstract/abstract15371.shtml
杨文采, 侯遵泽, 于常青. 2015.青藏高原地壳的三维密度结构和物质运动.地球物理学报, 58(11):4223-4234, doi:10.6038/cjg20151128. http://www.geophy.cn//CN/abstract/abstract11993.shtml
杨文采, 瞿辰, 任浩然等. 2019.青藏高原软流圈与特提斯洋板块俯冲.地质论评, 65(3):521-532, doi:10.16509/j.georeview.2019.03.001. http://d.old.wanfangdata.com.cn/Periodical/dzlp201903001
杨文采, 金胜, 张罗磊等. 2020.青藏高原岩石圈三维电性结构.地球物理学报, 63(3):817-827, doi:10.6038/cjg2020N0197. http://www.geophy.cn//CN/abstract/abstract15360.shtml
杨微, 王宝善, 彭志刚等. 2020.利用断裂带首波分析甘孜-玉树断裂带拉张盆地结构特征.地球物理学报, 63(3):1197-1213, doi:10.6038/cjg2020N0256. http://www.geophy.cn//CN/abstract/abstract15388.shtml
易桂喜, 姚华建, 朱介寿等. 2010.用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征.地球物理学报, 53(2):256-268, doi:10.3969/j.issn.0001-5733.2010.02.004. http://www.geophy.cn//CN/abstract/abstract1160.shtml
于洋, 徐啸, 高锐等. 2020.喜马拉雅造山带西部拉昂错蛇绿岩带区域地壳深部结构及其可能构造归属研究.地球物理学报, 63(3):840-846, doi:10.6038/cjg2020N0220. http://www.geophy.cn//CN/abstract/abstract15362.shtml
赵凌强, 詹艳, 王庆良等. 2020.祁连山东端冷龙岭隆起及邻区深部电性结构与孕震构造背景.地球物理学报, 63(3):1014-1025, doi:10.6038/cjg2020N0257. http://www.geophy.cn//CN/abstract/abstract15375.shtml
曾求, 储日升, 盛敏汉等. 2020.基于地震背景噪声的四川威远地区浅层速度结构成像研究.地球物理学报, 63(3):944-955, doi:10.6038/cjg2020N0177. http://www.geophy.cn//CN/abstract/abstract15370.shtml
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0