柴达木盆地东部晚海西-印支期剥蚀量与隆升历史——多种古温标与沉积学证据的制约

刘奎, 李宗星, 施小斌, 魏小洁, 任自强, 杨小秋, 彭博. 2020. 柴达木盆地东部晚海西-印支期剥蚀量与隆升历史——多种古温标与沉积学证据的制约. 地球物理学报, 63(4): 1403-1421, doi: 10.6038/cjg2020M0566
引用本文: 刘奎, 李宗星, 施小斌, 魏小洁, 任自强, 杨小秋, 彭博. 2020. 柴达木盆地东部晚海西-印支期剥蚀量与隆升历史——多种古温标与沉积学证据的制约. 地球物理学报, 63(4): 1403-1421, doi: 10.6038/cjg2020M0566
LIU Kui, LI ZongXing, SHI XiaoBin, WEI XiaoJie, REN ZiQiang, YANG XiaoQiu, PENG Bo. 2020. Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin: constraints from multiple thermometric indicators and sedimentary evidences. Chinese Journal of Geophysics (in Chinese), 63(4): 1403-1421, doi: 10.6038/cjg2020M0566
Citation: LIU Kui, LI ZongXing, SHI XiaoBin, WEI XiaoJie, REN ZiQiang, YANG XiaoQiu, PENG Bo. 2020. Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin: constraints from multiple thermometric indicators and sedimentary evidences. Chinese Journal of Geophysics (in Chinese), 63(4): 1403-1421, doi: 10.6038/cjg2020M0566

柴达木盆地东部晚海西-印支期剥蚀量与隆升历史——多种古温标与沉积学证据的制约

  • 基金项目:

    国家自然科学基金项目(41772272,41702124),中国地质调查局地质调查项目(1212011120964)资助

详细信息
    作者简介:

    刘奎, 男, 1991年, 硕士, 研究方向为构造-热年代学与盆地分析.E-mail:783431324@qq.com

    通讯作者: 李宗星, 男, 1982年, 博士, 副研究员, 研究方向为盆地地温场、构造-热演化.E-mail:lizongxing@cags.ac.cn
  • 中图分类号: P314

Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin: constraints from multiple thermometric indicators and sedimentary evidences

More Information
  • 柴达木盆地东部周缘造山带内保存有较完整的晚古生代-早中生代沉积记录,但盆地内至今仍未发现二叠系-三叠系.为探讨柴东地区二叠纪-三叠纪有无沉积及隆升历史等关键地质问题,本文首先利用古温标法恢复晚海西-印支期剥蚀量,随后,通过物源分析法获得印支期柴东北缘隆升的沉积学证据.结果表明,印支运动前,柴东地区残留石炭系顶界面埋深普遍超过2500 m,晚海西-印支期剥蚀量为2100~4300 m,剥蚀量从南往北逐渐减小.柴东地区曾沉积了2000~3000 m的二叠系-三叠系,随后被整体剥蚀.晚二叠世以来,随着古特提斯洋往北俯冲,盆地周缘开始隆升.早三叠世柴东北缘经历了一次快速隆升,先期的多套沉积地层与结晶基底被迅速剥蚀并为宗务隆南缘的隆务河群砾岩沉积提供物源.中三叠世海水往北和往东退出研究区.晚三叠世,松潘-甘孜地体强烈碰撞挤压使得东昆仑-柴达木地体下地壳显著缩短和增厚,柴东地区被整体抬升,并且形成了南高北低的古地貌格局,在古气候与水系作用下,二叠系-三叠系与部分石炭系被全部剥蚀并搬运至宗务隆、南祁连及松潘-甘孜一带.

  • 加载中
  • 图 1 

    柴达木盆地大地构造及研究区位置图(改自Xiao等,2013)

    Figure 1. 

    Tectonic map of the Qaidam Basin and location of the study area (Modified from Xiao et al., 2013)

    图 2 

    (a) 柴达木盆地东部及周缘造山带区域地质图、钻井与野外剖面位置、主要不整合面发育特征(改自1:500000柴达木盆地地质图); (b)北东向AA′地震剖面图(程荣等,2016)

    Figure 2. 

    (a) Regional geological map of the eastern Qaidam Basin and its surrounding mountain belts, locations of wells and profiles, characteristics of prominent unconformities (Modified from 1:500000 geological map of the Qaidam Basin); (b) NE-trending seismic section along the AA′ line in Fig. 2a (Cheng et al., 2016)

    图 3 

    东昆仑地区—柴东地区—宗务隆地区石炭系-侏罗系地层综合柱状图

    Figure 3. 

    Integrated Carboniferous-Jurassic stratigraphy in the East Kunlun, eastern Qaidam Basin and Zongwulong

    图 4 

    古温标法计算不整合面之上剥蚀量原理示意图

    Figure 4. 

    Schematic diagram showing thermometric indicator method to calculate denudation above the unconformity

    图 5 

    柴东地区石炭系与侏罗系烃源岩Ro平均值对比图

    Figure 5. 

    Average vitrinite reflectance (Ro) value of Carboniferous and Jurassic in the eastern Qaidam Basin

    图 6 

    柴东地区典型钻井及剖面的石炭系烃源岩熟度模拟值与实测值拟合结果

    Figure 6. 

    Fitting results of the maturity value of simulation and measurement for the Carboniferous source rocks of typical wells and profiles in the eastern Qaidam Basin

    图 7 

    柴东地区及周缘三叠纪古流向与古生代-中生代热年代学年龄数据分布图

    Figure 7. 

    Triassic paleo-currents and Paleozoic-Mesozoic thermochronology data in the eastern Qaidam Basin and its surrounding regions

    图 8 

    柴东南缘-东昆仑北缘古生代以来的冷却历史

    Figure 8. 

    Cooling history since Paleozoic in the southern margin of eastern Qaidam Basin-northern part of East Kunlun

    图 9 

    宗务隆构造带南缘下三叠统隆务河群野外照片及岩性特征

    Figure 9. 

    Field pictures and lithological characterstics of lower Triassic Longwuhe formation in the southern part of Zongwulong tectonic belt

    图 10 

    柴东地区及周缘二叠纪-三叠纪隆升剥蚀过程

    Figure 10. 

    Permian-Triassic uplift and denudation in the eastern Qaidam Basin and its surrounding regions

    表 1 

    柴东地区石炭系烃源岩样品深度、Ro值及最高古地温数据

    Table 1. 

    Samples depth, vitrinite reflectance (Ro) and maximum paleo-temperature data for Carboniferous source rocks in the eastern Qaidam Basin

    井位、剖面名称 深度/m Ro/% 最高古地温/℃
    尕丘1* 1633 1.19 157
    1670 1.18 156
    1673 1.19 157
    1685 1.20 158
    1691 1.26 161
    1699 1.28 162
    1757 1.31 164
    1763 1.26 161
    1799 1.33 165
    ZK5-2* 93 1.32 165
    126 1.34 166
    147 1.49 175
    171 1.46 174
    204 1.50 175
    231 1.54 177
    262 1.57 178
    292 1.65 182
    338 1.48 174
    柴页2* 655 1.16 157
    841 1.38 170
    903 1.49 175
    917 1.46 174
    934 1.46 174
    957 1.46 174
    979 1.44 173
    999 1.39 170
    1011 1.53 177
    1022 1.46 174
    1027 1.52 176
    1035 1.48 175
    1047 1.54 178
    1051 1.46 174
    ZK3-2* 43 1.3 164
    70 1.2 159
    165 1.4 171
    206 1.6 180
    282 1.2 159
    282 1.6 180
    307 1.7 186
    320 1.6 180
    404 1.7 186
    481 1.5 175
    523 1.7 186
    539 1.7 186
    543 1.63 182
    543 1.6 180
    青德地1* 1507 2.19 197
    1508 2.24 199
    1509 2.22 198
    1509 2.27 200
    1509 2.18 197
    1640 2.40 205
    霍参1* 2016 1.60 180
    2080 2.19 198
    2095 2.11 194
    城墙沟* 174 1.30 164
    820 1.15 155
    840 1.17 156
    856 1.25 161
    925 1.39 170
    942 1.39 170
    1060 1.76 190
    1076 1.78 191
    1149 1.62 181
    尕海南山* 245 1.61 171
    258 1.68 175
    263 1.64 174
    267 1.67 175
    389 1.78 180
    415 1.89 184
    441 1.82 181
    442 1.81 181
    455 1.88 184
    463 1.98 188
    465 1.95 187
    465 1.85 182
    旺尕秀* 645 0.92 136
    1146 0.90 134
    1167 0.86 130
    1218 0.95 138
    1388 1.03 144
    1396 1.06 145
    1406 1.23 152
    1430 1.47 170
    1435 1.10 146
    1476 1.14 148
    穿山沟* 458 2.24 199
    关角牙# 62 2.44 206
    136 2.50 208
    158 2.76 217
    164 2.68 214
    注:代表数据为本研究新测试;#代表数据收集自段宏亮等(2006).
    下载: 导出CSV

    表 2 

    柴东地区上石炭统砂岩样品锆石(U-Th)/He年龄分析数据

    Table 2. 

    Zircon (U-Th)/He ages of upper-Carboniferous sandstone samples from the eastern Qaidam Basin

    样品编号 U
    (×10-6)
    Th
    (×10-6)
    147S
    (×10-6)
    [eU]
    (×10-6)
    He
    (nmol/g)
    Mass
    (μg)
    Ft* Raw age
    (Ma)
    Age
    (Ma)
    ±σ
    DL0101-1 104.9 155.2 0.8 140.6 925.4 6.60 0.77 181.06 235.6 14.13
    DL0101-2 138.3 179.5 0.0 179.6 578.4 3.36 0.71 174.01 245.9 14.76
    DL0101-3 305.9 158.2 0.7 342.3 1039.5 3.37 0.71 164.22 229.8 13.79
    DL0101-4 171.5 182.8 0.0 213.6 1164.5 5.52 0.74 179.54 241.0 14.46
    采样位置 36°21′40.96″, 97°54′45.30″ (3106 m) 加权平均年龄 238.1±28.6 Ma
    DL0102-1 205.1 83.0 0.6 224.2 849.2 4.23 0.76 163.37 216.3 12.98
    DL0102-2 43.7 109.3 1.0 68.9 164.9 3.41 0.72 127.84 176.9 10.61
    DL0102-3 300.7 124.9 0.0 329.4 1179.5 4.00 0.74 163.23 219.6 13.17
    DL0102-4 72.4 71.4 0.0 88.8 279.8 3.06 0.72 187.20 259.7 15.58
    DL0102-5 79.0 59.2 0.1 92.6 537.9 6.43 0.78 164.71 212.0 12.72
    DL0102-6 91.5 65.5 0.0 106.6 663.0 5.52 0.76 204.41 267.7 16.06
    采样位置: 36°21′38.93″, 97°54′39.53″ (3093 m) 加权平均年龄 225.4±33.4 Ma
    SHG01-1 95.6 70.2 1.7 111.7 676.6 5.33 0.75 206.19 275.8 16.55
    SHG01-2 75.2 50.4 0.1 86.8 872.7 7.91 0.79 230.21 290.1 17.41
    SHG01-3 87.4 61.9 0.0 101.6 1330.5 11.01 0.81 215.83 267.3 16.04
    SHG01-4 80.3 53.6 1.5 92.6 594.3 5.65 0.77 206.21 267.5 16.05
    采样位置 37°25′05.74″, 96°04′24.54″ (3424 m) 加权平均年龄 275.2±33.0 Ma
    SHG02-1 455.2 103.8 5.8 479.1 5346.1 9.78 0.81 207.41 257.0 15.42
    SHG02-2 240.8 82.4 2.1 259.8 1262.9 4.19 0.74 210.69 283.3 17.00
    SHG02-3 161.8 118.1 0.7 189.0 1190.4 5.86 0.77 195.47 254.0 15.24
    SHG02-4 203.6 150.1 0.4 238.2 2365.0 8.58 0.79 209.96 264.9 15.89
    SHG02-5 398.0 158.2 0.1 434.4 4153.0 7.51 0.78 230.84 295.4 17.72
    采样位置: 37°25′05.74″, 96°04′24.54″ (3378 m) 加权平均年龄 264.8±35.8 Ma
    SHG03-1 440.1 218.9 6.2 490.6 2918.7 6.17 0.77 175.71 229.3 13.76
    SHG03-2 64.7 85.0 0.0 84.3 735.6 7.76 0.79 203.89 259.6 15.58
    SHG03-3 84.1 59.9 0.0 97.8 477.5 4.64 0.75 191.32 254.2 15.25
    SHG03-4 95.3 99.1 0.0 118.1 488.5 3.73 0.73 201.02 275.4 16.53
    SHG03-5 93.0 77.3 0.0 110.8 311.9 2.64 0.70 193.55 275.9 16.55
    采样位置: 37°25′05.74″, 96°04′24.54″ (3212 m) 加权平均年龄 258.9±38.4 Ma
    注:[eU]=U+0.235 × Th×10-6 (Flowers et al., 2007); Ft*代表α-ejection校正(Farley, 2002); 运用Isoplot V3.25 (Ludwig et al., 1991)计算的置信水平达到95%的加权平均年龄.
    下载: 导出CSV

    表 3 

    残留石炭系及现今埋深、古地温梯度、不整合面处最高古地温及古埋深、晚海西-印支期剥蚀量

    Table 3. 

    Results of residual Carboniferous and its present-day depth, and paleo-geothermal gradients, maximum paleo-temperature and burial depth of unconformity before Indosinian, Late Hercynian-Indosinian denudation

    井位、剖面名称 残留石炭系及现今埋深(m) 古地温梯度
    (℃/km)
    不整合面处最高古地温
    (℃)
    不整合面古埋深
    (m)
    晚海西-印支期剥蚀量
    (m)
    尕丘1* C2k(1290~1908) 38 143 3100 3100
    ZK5-2*** C2k(52~504) 42 164 3300 2300
    柴页2*** C2zh~C1h(20~2500) 40 135 2700 2100
    ZK3-2*** C2k(10~718) 39 154 3300 2100
    青德地1** C2zh~C1h(904~3012) 43 171 3400 2900
    霍参1* C1h(1876~2150) 43 184 3700 3700
    城墙沟** C2k~C1c(0~1580) 39 128 2600 2200
    尕海南山** C2zh~ C1h(0~1217) 43 165 3300 2900
    旺尕秀* C2zh~C2k(640~1623) 37 118 2500 2500
    穿山沟* C1c~C1ch(0~523) 43 184 3700 3700
    关角牙* C2zh(0~274) 45 201 3900 3900
    注:柴页2***,代表三期不整合面叠加,剥蚀量计算误差为±300 m;青德地1**,代表两期不整合面叠加,剥蚀量计算误差为±200 m;旺尕秀*,代表印支运动形成的不整合面,剥蚀量计算误差为±100 m.
    下载: 导出CSV

    表 4 

    柴东南缘-东昆仑北缘晚二叠世-三叠纪冷却历史、古地温梯度(假定)及剥蚀量表

    Table 4. 

    Late Permian-Triassic cooling history, assumed paleo-geothermal gradients and denudation in the southern margin of eastern Qaidam Basin-northern part of East Kunlun

    剖面名称 年龄
    (Ma)
    温度路径
    (℃)
    古地温梯度
    (℃/km)
    剥蚀量
    (m)
    阿拉格尔泰* 238~210 210~55 43 3600
    香日德*** 251~195 800~400 50 8000#
    诺木洪** 263~195 440~248 45 4300
    五龙沟** 263~195 440~250 45 4200
    格尔木东** 263~195 340~165 45 3900
    格尔木*** 257~195 800~200 50 12000#
    注:阿拉格尔泰*,剥蚀量计算误差为±200 m.诺木洪**,剥蚀量计算误差为±400 m.香日德***,剥蚀量计算误差为±2000 m;8000#代表剥蚀量异常高值,本研究暂不作分析讨论.
    下载: 导出CSV
  •  

    Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. London: Wiley-Blackwell.

     

    Chen W N. 2015. Geologic features, provenance analysis and structural evolution of Naocangjiangou formation at the southern slope of the East Kunlun (East Part)[Master's thesis] (in Chinese). Xi'an: Chang'an University).

     

    Chen X H. 2010. Basin-Mountain Coupling and Tectonic Evolution of Qaidam Basin and its Adjacent Orogenic Belts (in Chinese). Beijing: Geological Press.

     

    Chen X H, McRivette M W, Li L, et al. 2011. Thermochronological evidence for multi-phase uplifting of the East Kunlun Mountains, northern Tibetan Plateau. Geological Bulletin of China (in Chinese), 30(11):1647-1660. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201111001

     

    Chen X H, Gehrels G, Yin A, et al. 2015. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau:Implications for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114:674-692. doi: 10.1016/j.jseaes.2014.11.013

     

    Cheng R, Xiao Y J, Lin H X, et al. 2016. A study of Carboniferous stratigraphic distribution and controlling factors in the eastern section of North Qaidam. Earth Science Frontiers (in Chinese), 23(5):75-85. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605009

     

    Cherniak D J, Watson E B. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2):5-24. doi: 10.1016/S0009-2541(00)00233-3

     

    Dai J G, Wang C S, Hourigan J, et al. 2013. Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet:Insights from U-Pb geochronology and (U-Th)/He thermochronology. Tectonophysics, 599:97-106. doi: 10.1016/j.tecto.2013.04.005

     

    Dai K, Liu C L, Xiao D Q, et al. 2016. The tectonic deformation and evolution of the Olongbluke area in Eastern Qaidam Basin. Earth Science Frontiers (in Chinese), 23(5):33-44. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605005

     

    Department of Geology and Mineral Resources of the People's Republic of China. 1978. I. regional geology. No. 24, regional geology of Qinghai province. Geological Press (in Chinese).

     

    Duan H L, Zhong J H, Wang Z K, et al. 2006. Evaluation of Carboniferous hydrocarbon source rocks in the eastern Qaidam Basin, China. Geological Bulletin of China (in Chinese), 25(9):1135-1142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200609026

     

    Duvall A R, Clark M K, Kirby E, et al. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for kinematic change during late-stage orogenesis. Tectonics, 32(5):1190-1211. doi: 10.1002/tect.20072

     

    Enkelmann E, Weislogel A, Ratschbacher L, et al. 2007. How was the Triassic Songpan-Garzê basin filled? A provenance study. Tectonics, 26(4):TC4007, doi:10.1029/2006TC002078.

     

    Fang C G, Li F J, Meng L N, et al. 2012. Evaluation of middle Jurassic hydrocarbon source rocks in Hongshan sag, northern Qaidam Basin. Natural Gas Geosciences (in Chinese), 23(5):856-861. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201205007

     

    Farley K A. 2002. (U-Th)/He dating:techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1):819-844. doi: 10.2138/rmg.2002.47.18

     

    Flowers R M, Shuster D L, Wernicke B P, et al. 2007. Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology, 35(5):447-450. doi: 10.1130/G23471A.1

     

    Harris N B W, Xu R H, Lewis C L, et al. 1988. Plutonic Rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594):145-168. http://d.old.wanfangdata.com.cn/NSTLQK/10.1098-rsta.1988.0124/

     

    Harrison T M. 1982. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology, 78(3):324-331. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00398927/

     

    Harrison T M, Duncan I, Mcdougall I. 2015. Diffusion of 40Ar in biotite:Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11):2461-2468. doi: 10.1016/0016-7037(85)90246-7

     

    Harrison T M, Célérier J, Aikman A B, et al. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4):1039-1051. doi: 10.1016/j.gca.2008.09.038

     

    Hu S B, Wang J Y, Zhang R Y. 1999. Estimation of the amount of uplift and erosion across an unconformity using vitrinite reflectance data. Petroleum Exploration and Development (in Chinese), 1999, 26(4):42-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060793

     

    Huang H, Niu Y L, Nowell G, et al. 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 370:1-18. doi: 10.1016/j.chemgeo.2014.01.010

     

    Jian P, Liu D Y, Kröner A, et al. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4):767-784. doi: 10.1016/j.lithos.2009.04.006

     

    Landry K R, Coutand I, Whipp D M Jr, et al. 2016. Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya:Insights from inversion of multithermochronologic data. Tectonics, 35(3):833-859.

     

    Li Ruibao, Pei Xianzhi, Li Zuochen, et al. 2012. Geological characteristics of late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers (in Chinese), 19(5):244-254. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205024

     

    Li J L, Xiao Y J, Wang D H, et al. 2016. Jurassic prototype basin reconstruction in east part of Qaidam Basin. Earth Science Frontiers (in Chinese), 23(5):11-22. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003

     

    Li R B, Pei X Z, Li Z C, et al. 2015. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains. Geological Bulletin of China (in Chinese), 34(12):2302-2314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201512016

     

    Li W, Neubauer F, Liu Y J, et al. 2013. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains:Constraints from zircon dating of granitoids and modern river sands. Journal of Asian Earth Sciences, 77:183-202. doi: 10.1016/j.jseaes.2013.08.030

     

    Li Z X, Gao J, Zheng C, et al. 2015. Present-day heat flow and tectonic-thermal evolution since the late Paleozoic time of the Qaidam Basin. Chinese Journal of Geophysics (in Chinese), 58(10):3687-3705, doi:10.6038/cjg20151021.

     

    Li Z X, Qiu N S, Ma Y S, et al. 2017. The tectono-thermal evolution in the eastern Qaidam Basin, Northwest China since the Paleozoic. Earth Science Frontiers (in Chinese), 24(3):157-167. http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201902004

     

    Liu C D, Mo X X, Luo Z H, et al. 2004. Mixing events between the crust-and mantle-derived magmas in Eastern Kunlun:Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin, 49(8):828-834. doi: 10.1007/bf02889756

     

    Liu Y J, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398(3-4):199-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbcac0861325b6fa07e20210c06fd130

     

    Liu Z Q, Pei X Z, Li R B, et al. 2011. LA-ICP-MS zircon U-Pb geochronology of the two suites of ophiolites at the Buqingshan area of the A'nyemaqen Orogenic belt in the southern margin of East Kunlun and its tectonic implication. Acta Geologica Sinica (in Chinese), 85(2):185-194. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102005.htm

     

    Ludwig K R, Szabo B J, Moore J G, et al. 1991. Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs. Geology, 19(2):171-174. doi: 10.1130/0091-7613(1991)0192.3.co;2 http://www.researchgate.net/publication/236628454_Crustal_subsidence_rate_off_Hawaii_determined_from_234U238U_ages_of_drowned_coral_reefs

     

    Lü M, Wang S L. 2013. Evaluation of argillaceous source rocks of upper Triassic Galedesi formation in the Halahu depression of southern Qilian basin. Western China Science and Technology (in Chinese), 12(8):21-22.

     

    Ma Y S, Yin C M, Liu C L, et al. 2012. The progress of carboniferous oil and gas investigation and assessment in Qaidam Basin. Acta Geoscientica Sinica (in Chinese), 33(2):135-144.

     

    Miller K G, Kominz M A, Browning J V, et al. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752):1293-1298. http://d.old.wanfangdata.com.cn/NSTLQK/10.1126-science.1116412/

     

    Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1):107-122. doi: 10.1016/S0012-821X(99)00133-8

     

    Niu Y B, Zhong J H, Duan H L, et al. 2010. Relationship between Carboniferous sedimentary facies and source rock in Qaidam Basin. Acta Sedimentologica Sinica (in Chinese), 28(1):140-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201001016

     

    Peng Y. 2015. The Late Hercynian-Indosinian structural characteristics of the Zongwulong tectonic belt in north Qaidam Basin[Ph. D. thesis] (in Chinese). Beijing: Chinese Academy of Geological Sciences.

     

    Peng Y, Ma Y S, Liu C L, et al. 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in north Qaidam. Earth Science Frontiers (in Chinese), 23(2):206-221. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602020

     

    Qiu N S, Reiners P, Mei Q H, et al. 2009. Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin-A case history of Well KQ1 in the Tarim Basin. Chinese Journal of Geophysics (in Chinese), 52(7):1825-1835, doi:10.3969/j.issn.0001-5733.2009.07.017.

     

    Reiners P W, Spell T L, Nicolescu S, et al. 2004. Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021

     

    Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34:419-466.

     

    Shi X B, Kohn B, Spencer S, et al. 2011. Cenozoic denudation history of southern Hainan Island, South China Sea:Constraints from low temperature thermochronology. Tectonophysics, 504(1-4):100-115.

     

    Sun J P, Chen S Y, Hu Z Y, et al. 2014. Research on the mixed model and developmental characteristic of the clastic-carbonate diamictite facies in the northern Qaidam. Natural Gas Geoscience (in Chinese), 25(10):1586-1593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201410011

     

    Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on Chemical kinetics. AAPG Bulletin, 74(10):1559-1570. http://d.old.wanfangdata.com.cn/NSTLQK/10.2340-16501977-0409/

     

    Tian Y T, Zhu C Q, Xu M, et al. 2011. Post-Early Cretaceous denudation history of the northeastern Sichuan basin:constraints from low-temperature thermochronology profiles. Chinese Journal of Geophysics (in Chinese), 54(3):807-816, doi:10.3969/j.issn.0001-5733.2011.03.021.

     

    Wang C S, Li X H. 2003. Sedimentary Basin:From Principles to Analyses (in Chinese). Beijing:Advanced Education Press.

     

    Wang F, Feng H L, Shi W B, et al. 2016. Relief history and denudation evolution of the northern Tibet margin:Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675:196-208. doi: 10.1016/j.tecto.2016.03.001

     

    Wang G C, Xiang S Y, Wang A, et al. 2007. Thermochronological constraint to the processes of the East Kunlun and adjacent areas in Mesozoic-Early Cenozoic. Earth Science-Journal of China University of Geosciences (in Chinese), 32(5):605-614, 680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200705003

     

    Wang L G. 1984. Terrestrial features and stratigraphic classification of ancient volcanic groups in Elashan, Qinghai provence. Northwestern Geology (in Chinese), 1984(3):1-9.

     

    Wang S L, Zhou L F. 2016. Geochemistry characteristics and provenance rock of the upper Triassic Atasi formation detrital rocks in the southern Qilian Basin. Geoscience (in Chinese), 30(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201601010

     

    Wei X J, Ma Y S, Li Z X, et al. 2018. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin. Journal of Palaeogeography (in Chinese), 20(3):409-422. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201803005

     

    Wolf R A, Farley K A, Silver L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21):4231-4240.

     

    Wu Long. 2013. The detrital-zircon U-Pb dating and provenance analysis for the Triassic sandstone in Qilian Shan, northeastern margin of the Tibetan Plateau[Ph. D. thesis] (in Chinese). China University of Geosciences (Beijing).

     

    Xia R, Wang C M, Deng J, et al. 2014. Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton. Journal of Asian Earth Sciences, 93:193-210. doi: 10.1016/j.jseaes.2014.07.013

     

    Xin H T, Wang H C, Zhou S J. 2006. Geological events and tectonic evolution of the north margin of the Qaidam Basin. Geological Survey and Research (in Chinese), 29(4):311-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200604010

     

    Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:implications for magma mixing during subduction of Paleo-Tethyan lithosphere. Mineralogy and Petrology, 104(3-4):211-224.

     

    Xu W, Sun ZM, Pei JL, et al. 2011. New Late Permian paleomagnetic results from Qaidam block and tectonic implications. Acta Petrologica Sinica (in Chinese), 27(11):3479-3486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9b0a64be6a29247b06a56f1f76e365f

     

    Yan Z, Bian Q T, Korchagin O A, et al. 2008. Provenance of Early Triassic Hongshuichuan formation in the southern margin of the East Kunlun Mountains:constrains from detrital framework, heavy analysis and geochemistry. Acta Petrologica Sinica (in Chinese), 24(5):1068-1078. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200805014.htm

     

    Yin A, Harrison T M. 2003. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28:211-280.

     

    Yin A, Dang Y Q, Zhang M, et al. 2008. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3):Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin, 120(7-8):847-876.

     

    Yu L, Xiao A C, Wu L, et al. 2017. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications:evidence from detrital zircon geochronology. International Journal of Earth Sciences, 106(8):2713-2726.

     

    Yu H J, Tuo J C, Liu L F, et al. 2000. Geochemical characteristics and evaluation on hydrocarbon generation potentials of source rocks in Jurassic eastern Qaidam Basin. Acta Sedimentologica Sinica (in Chinese), 18(1):208-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200001022

     

    Yuan W M, Dong J Q, Wang S C, et al. 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6):847-856. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28712f0fc5ee0c91c09be161f44684a4

     

    Yuan Y S, Zheng H R, Tu W. 2008. Methods of eroded strata thickness restoration in sedimentary basins. Petroleum Geology and Experiment (in Chinese), 30(6):636-642. doi: 10.11781/sysydz200806636

     

    Yuan Y S, Lin J H, Cheng X Y, et al. 2014. Yanshan-Himalayan denudation in western Hubei Eastern Chongqing area. Chinese Journal of Geophysics (in Chinese), 57(9):2878-2884, doi:10.6038/cjg20140913.

     

    Zhang L J. 2015. Provenance analysis of Lower-Middle Triassic in Gonghe Basin, Qinghai[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).

     

    陈伟男. 2015.东昆仑东段南坡闹仓坚沟组地质特征、物源属性与构造演化[硕士论文].西安: 长安大学.

     

    陈宣华. 2010.柴达木盆地及其周缘山系盆山耦合与构造演化.北京:地质出版社.

     

    陈宣华, McRivette M W, 李丽等. 2011.东昆仑造山带多期隆升历史的地质热年代学证据.地质通报, 30(11):1647-1660. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201111001

     

    程荣, 肖永军, 林会喜等. 2016.柴达木盆地北缘东段石炭系残留分布及控制因素.地学前缘, 23(5):75-85. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605009

     

    代昆, 刘成林, 肖敦清等. 2016.柴达木盆地欧龙布鲁克地区构造演化研究.地学前缘, 23(5):33-44. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605005

     

    段宏亮, 钟建华, 王志坤等. 2006.柴达木盆地东部石炭系烃源岩评价.地质通报, 25(9):1135-1142. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200609026

     

    方朝刚, 李凤杰, 孟立娜等. 2012.柴达木盆地北缘红山断陷中侏罗统烃源岩评价.天然气地球科学, 23(5):856-861. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201205007

     

    胡圣标, 汪集暘, 张容燕. 1999.利用镜质体反射率数据估算地层剥蚀厚度.石油勘探与开发, 1999, 26(4):42-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060793

     

    李军亮, 肖永军, 王大华等. 2016.柴达木盆地东部侏罗纪原型盆地恢复.地学前缘, 23(5):11-22. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003

     

    李瑞保, 裴先治, 李佐臣等. 2012.东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应.地学前缘, 19(5):244-254.

     

    李瑞保, 裴先治, 李佐臣等. 2015.东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复.地质通报, 34(12):2302-2314. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201512016

     

    李宗星, 高俊, 郑策等. 2015.柴达木盆地现今大地热流与晚古生代以来构造-热演化.地球物理学报, 58(10):3687-3705, doi:10.6038/cjg20151021. http://www.geophy.cn/CN/abstract/abstract11854.shtml

     

    李宗星, 邱楠生, 马寅生等. 2017.柴达木盆地东部古生代以来构造-热演化.地学前缘, 24(3):157-167. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703014

     

    刘战庆, 裴先治, 李瑞保等. 2011.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201102004

     

    吕苗, 王苏里. 2013.南祁连盆地哈拉湖坳陷上三叠统尕勒德寺组泥质岩类烃源岩评价.中国西部科技, 12(8):21-22. http://d.old.wanfangdata.com.cn/Periodical/zgxbkj201308009

     

    马寅生, 尹成明, 刘成林等. 2012.柴达木盆地石炭系油气资源调查评价进展.地球学报, 33(2):135-144. http://d.old.wanfangdata.com.cn/Periodical/dqxb201202002

     

    牛永斌, 钟建华, 段宏亮等. 2010.柴达木盆地石炭系沉积相及其与烃源岩的关系.沉积学报, 28(1):140-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201001016

     

    彭渊. 2015.柴北缘宗务隆构造带海西晚期-印支期构造特征研究[博士论文].北京: 中国地质科学院.

     

    彭渊, 马寅生, 刘成林等. 2016.柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义.地学前缘, 23(2):206-221. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602020

     

    青海省地质矿产局. 1978.中华人民共和国地质矿产部地质专报.一, 区域地质.第24号, 青海省区域地质志.地质出版社. (未找到本条文献信息, 请核对)

     

    邱楠生, Reiners P, 梅庆华等. 2009. (U-Th)/He年龄在沉积盆地构造-热演化研究中的应用——以塔里木盆地KQ1井为例.地球物理学报, 52(7):1825-1835, doi:10.3969/j.issn.0001-5733.2009.07.017. http://www.geophy.cn/CN/abstract/abstract1100.shtml

     

    孙娇鹏, 陈世悦, 胡忠亚等. 2014.柴东北缘古生代碎屑岩-碳酸盐岩混积相发育特征及组合模式研究.天然气地球科学, 25(10):1586-1593. doi: 10.11764/j.issn.1672-1926.2014.10.1586

     

    田云涛, 朱传庆, 徐明等. 2011.晚白垩世以来川东北地区的剥蚀历史——多类低温热年代学数据综合剖面的制约.地球物理学报, 54(3):807-816, doi:10.3969/j.issn.0001-5733.2011.03.021. http://www.geophy.cn/CN/abstract/abstract7852.shtml

     

    王成善, 李祥辉. 2003.沉积盆地分析原理与方法.北京:高等教育出版社.

     

    王国灿, 向树元, 王岸等. 2007.东昆仑及相邻地区中生代-新生代早期构造过程的热年代学记录.地球科学-中国地质大学学报, 32(5):605-614, 680. http://d.old.wanfangdata.com.cn/Periodical/dqkx200705003

     

    王连根. 1984.青海鄂拉山地区古火山群陆相喷发特征及地层划分.西北地质, 1984(3):1-9. http://www.cnki.com.cn/Article/CJFDTotal-XBDI198403000.htm

     

    王苏里, 周立发. 2016.南祁连盆地上三叠统阿塔寺组碎屑岩地球化学特征及其源岩.现代地质, 30(1):87-96. http://d.old.wanfangdata.com.cn/Periodical/xddz201601010

     

    魏小洁, 马寅生, 李宗星等. 2018.柴达木盆地北缘上石炭统碎屑岩——碳酸盐岩高频转换过程及驱动机制.古地理学报, 20(3):409-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201803005

     

    吴龙. 2013.青藏高原东北缘祁连山三叠系砂岩碎屑锆石U-Pb定年及物源分析[硕士论文].北京: 中国地质大学(北京).

     

    辛后田, 王惠初, 周世军. 2006.柴北缘的大地构造演化及其地质事件群.地质调查与研究, 29(4):311-320. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz200604010

     

    许伟, 孙知明, 裴军令等. 2011.青藏高原北部柴达木块体晚二叠世古地磁结果及其构造意义.岩石学报, 27(11):3479-3486. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111026

     

    闫臻, 边千韬, Korchagin O A等. 2008.东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报, 24(5):1068-1078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805013

     

    于会娟, 妥进才, 刘洛夫等. 2000.柴达木盆地东部地区侏罗系烃源岩地球化学特征及生烃潜力评价.沉积学报, 18(1):208-138. http://d.old.wanfangdata.com.cn/Periodical/cjxb200001022

     

    袁玉松, 郑和荣, 涂伟. 2008.沉积盆地剥蚀量恢复方法.石油实验地质, 30(6):636-642. http://d.old.wanfangdata.com.cn/Periodical/sysydz200806019

     

    袁玉松, 林娟华, 程心阳等. 2014.鄂西渝东地区晚燕山-喜马拉雅期剥蚀量.地球物理学报, 57(9):2878-2884, doi:10.6038/cjg20140913 doi:10.6038/cjg20140913. http://www.geophy.cn/CN/abstract/abstract10726.shtml

     

    张立军. 2015.青海共和盆地下-中三叠统物源分析[硕士论文].北京: 中国地质大学(北京).

  • 加载中

(10)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-09-20
修回日期:  2019-09-20
上线日期:  2020-04-05

目录