Transformer模型和迁移学习在地震P波和噪声判别中的应用研究

郑周, 林彬华, 于伟恒, 金星, 王士成, 李水龙, 周施文, 丁炳火, 韦永祥, 周跃勇, 陈辉. 2024. Transformer模型和迁移学习在地震P波和噪声判别中的应用研究. 地球物理学报, 67(11): 4189-4203, doi: 10.6038/cjg2024S0004
引用本文: 郑周, 林彬华, 于伟恒, 金星, 王士成, 李水龙, 周施文, 丁炳火, 韦永祥, 周跃勇, 陈辉. 2024. Transformer模型和迁移学习在地震P波和噪声判别中的应用研究. 地球物理学报, 67(11): 4189-4203, doi: 10.6038/cjg2024S0004
ZHENG Zhou, LIN BinHua, YU WeiHeng, JIN Xing, WANG ShiCheng, LI ShuiLong, ZHOU ShiWen, DING BingHou, WEI YongXiang, ZHOU YueYong, CHEN Hui. 2024. Research on the application of transformer model and transfer learning in earthquake P-wave and noise discrimination. Chinese Journal of Geophysics (in Chinese), 67(11): 4189-4203, doi: 10.6038/cjg2024S0004
Citation: ZHENG Zhou, LIN BinHua, YU WeiHeng, JIN Xing, WANG ShiCheng, LI ShuiLong, ZHOU ShiWen, DING BingHou, WEI YongXiang, ZHOU YueYong, CHEN Hui. 2024. Research on the application of transformer model and transfer learning in earthquake P-wave and noise discrimination. Chinese Journal of Geophysics (in Chinese), 67(11): 4189-4203, doi: 10.6038/cjg2024S0004

Transformer模型和迁移学习在地震P波和噪声判别中的应用研究

  • 基金项目:

    国家重点研发计划(2018YFC1504005), 国家自然科学基金项目(40104062, U1839208)和地震局地震科技星火计划(XH23024A)联合资助

详细信息
    作者简介:

    郑周, 男, 1999年生, 博士研究生, 主要从事深度学习地震预警研究.E-mail: 1224860695@qq.com

    通讯作者: 王士成, 男, 1987年生, 高级工程师, 主要从事地震监测预警、烈度速报等方面的研究.E-mail: gilliant@fjea.gov.cn
  • 中图分类号: P315

Research on the application of transformer model and transfer learning in earthquake P-wave and noise discrimination

More Information
  • 准确可靠地区分地震和噪声信号对于地震危险性分析和地震预警至关重要.然而, 无处不在且复杂的噪声信号使这项任务充满挑战.针对中国和日本数据的差异, 本研究在深度学习模型训练过程中采取了不同的策略来区分地震和噪声信号.首先, 鉴于日本数据丰富, 直接训练一个Transformer模型, 该模型在日本的判别准确率为99.82%.其次, 为缓解数据不平衡, 对中国地震数据采用了随机滑动波形窗进行增强.还使用中国数据对预先训练的日本模型进行了微调, 以更好地适应中国数据集.经过微调后, 模型在中国的判别准确率为99.47%.结果表明, 使用原始波形训练的深度学习模型进行地震事件判别时能够取得很高的准确率.此外, 迁移学习模型在门源6.9级地震和漾濞序列震中得到了良好的验证, 表明迁移学习在台网稀疏地区的应用是有效的, 这为地震学和地震预警提供了一种潜在的方法.

  • 加载中
  • 图 1 

    本研究使用的日本数据集的信息

    Figure 1. 

    Information of the Japan dataset used in this study

    图 2 

    本研究使用的中国数据集的信息

    Figure 2. 

    Information of the China dataset used in this study

    图 3 

    使用窗口切片进行数据增强

    Figure 3. 

    Data augmentation using window slicing

    图 4 

    本研究所使用的波形样本图

    Figure 4. 

    The waveform sample diagram used in this study

    图 5 

    Transformer模型架构

    Figure 5. 

    Transformer model architecture

    图 6 

    Transformer-PN模型在日本测试集上的混淆矩阵

    Figure 6. 

    Confusion matrix of Transformer-PN model on Japanese test set

    图 7 

    Transformer-TL-PN模型在中国测试集上的混淆矩阵

    Figure 7. 

    Confusion matrix of Transformer-TL-PN model on Chinese test set

    图 8 

    正确分类和错误分类地震和噪声信号的例子

    Figure 8. 

    Examples of correctly classified and misclassified earthquake and noise signals

    图 9 

    Transformer-TL-PN模型对地震震级和震中距的判定性能

    Figure 9. 

    The discrimination performance of Transformer-TL-PN model for earthquake magnitude and epicentral distance

    图 10 

    Transformer-TL-PN模型输出为真实P波的概率

    Figure 10. 

    Transformer-TL-PN model output probability of being a real P wave

    图 11 

    Transformer-TL-PN模型在门源地震上的表现

    Figure 11. 

    The performance of Transformer-TL-PN model in Menyuan earthquake

    图 12 

    错误判定的地震波形实例

    Figure 12. 

    Earthquake waveform samples of incorrect discrimination

    图 13 

    Transformer-TL-PN模型在漾濞序列震上的表现

    Figure 13. 

    The performance of Transformer-TL-PN model in Yangbi sequence earthquakes

    图 14 

    正确判定的波形实例

    Figure 14. 

    Waveform examples of correct discrimination

    图 15 

    Transformer-TL-PN模型在连续波形上的表现

    Figure 15. 

    The performance of Transformer-TL-PN model on continuous waveforms

    表 1 

    不同模型在日本测试集上的表现

    Table 1. 

    The performance of different models on the Japanese test set

    模型名称 判别类型 召回率(%) 精度(%) F1 (%) 准确率(%)
    Transformer-PN 地震 99.79 99.86 99.82 99.82
    噪声 99.86 99.79 99.82
    CNN-PN 地震 97.93 98.12 98.02 98.03
    噪声 98.13 97.94 98.03
    LSTM-PN 地震 98.53 98.62 98.57 98.58
    噪声 98.63 98.53 98.58
    下载: 导出CSV

    表 2 

    不同模型在中国测试集上的表现

    Table 2. 

    The performance of different models on the Chinese test set

    模型名称 判别类型 召回率(%) 精度(%) F1 (%) 准确率(%)
    CNN-PN 地震 91.11 92.24 91.68 92.62
    噪声 93.83 92.91 93.37
    LSTM-PN 地震 92.64 93.22 92.93 93.41
    噪声 94.60 93.56 94.08
    Transformer-PN 地震 94.44 95.53 94.98 95.56
    噪声 96.45 95.58 96.01
    Transformer-TL-PN 地震 99.26 99.58 99.42 99.47
    噪声 99.67 99.42 99.54
    下载: 导出CSV

    表 3 

    漾濞序列震例

    Table 3. 

    Yangbi sequence earthquake cases

    发震时刻 经度(°E) 纬度(°N) 震级MS 震源深度/km
    2021-05-21 20∶56∶02 99.93 25.63 4.2 8
    2021-05-21 21∶21∶25 99.92 25.63 5.6 10
    2021-05-21 21∶23∶43 99.97 25.66 4.5 8
    2021-05-21 21∶48∶34 99.87 25.67 6.4 8
    2021-05-21 21∶53∶47 99.98 25.62 4.1 9
    2021-05-21 21∶55∶28 99.89 25.67 5.0 8
    2021-05-21 21∶56∶37 99.95 25.64 4.9 8
    2021-05-21 22∶02∶00 99.89 25.66 4.1 8
    2021-05-21 22∶15∶16 99.96 25.59 4.0 8
    2021-05-21 22∶19∶48 99.95 25.60 3.0 8
    2021-05-21 22∶30∶27 99.90 25.65 3.1 8
    2021-05-21 22∶31∶10 99.97 25.59 5.2 8
    2021-05-2122∶59∶37 99.94 25.63 3.5 8
    2021-05-21 23∶08∶57 99.98 25.61 3.0 8
    2021-05-22 00∶51∶41 99.87 25.70 4.0 8
    2021-05-22 00∶53∶31 99.91 25.65 3.2 8
    2021-05-22 00∶56∶07 99.91 25.63 3.2 9
    2021-05-22 01∶36∶06 99.94 25.62 3.5 9
    下载: 导出CSV
  •  

    Allen R V. 1978. Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5): 1521-1532, doi: 10.1785/bssa0680051521.

     

    Brown J R, Beroza G C, Shelly D R. 2008. An autocorrelation method to detect low frequency earthquakes within tremor. Geophysical Research Letters, 35(16): L16305, doi: 10.1029/2008GL034560.

     

    Chai C P, Maceira M, Santos-Villalobos H J, et al. 2020. Using a deep neural network and transfer learning to bridge scales for seismic phase picking. Geophysical Research Letters, 47(16): e2020GL088651, doi: 10.1029/2020GL088651.

     

    Chicco D, Jurman G. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1): 6, doi: 10.1186/s12864-019-6413-7.

     

    Cuéllar A, Suárez G, Espinosa-Aranda J M. 2018. A fast earthquake early warning algorithm based on the first 3 s of the P-wave coda. Bulletin of the Seismological Society of America, 108(4): 2068-2079, doi: 10.1785/0120180079.

     

    Ide H, Kurita T. 2017. Improvement of learning for CNN with ReLU activation by sparse regularization. //2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA: IEEE, 2684-2691, doi: 10.1109/IJCNN.2017.7966185.

     

    Jia R S, Sun H M, Peng Y J, et al. 2017. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine. Journal of Seismology, 21(4): 735-748, doi: 10.1007/s10950-016-9632-2.

     

    Jozinović D, Lomax A, Štajduhar I, et al. 2022. Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data. Geophysical Journal International, 229(1): 704-718, doi: 10.1093/gji/ggab488.

     

    Kamigaichi O, Saito M, DoiK, et al. 2009. Earthquake early warning in Japan: Warning the general public and future prospects. Seismological Research Letters, 80(5): 717-726, doi: 10.1785/gssrl.80.5.717.

     

    Kim G, Ku B, Ahn J K, et al. 2022. Graph convolution networks for seismic events classification using raw waveform data from multiple stations. IEEE Geoscience and Remote Sensing Letters, 19: 3004805, doi: 10.1109/lgrs.2021.3127874.

     

    Kingma D P, Ba J. 2017. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980.

     

    Kong Q K, Wang R J, Walter W R, et al. 2022. Combining deep learning with physics based features in explosion-earthquake discrimination. Geophysical Research Letters, 49(13): e2022GL098645, doi: 10.1029/2022GL098645.

     

    Kuang W H, Yuan C C, Zhang J. 2021. Network-based earthquake magnitude determination via deep learning. Seismological Research Letters, 92(4): 2245-2254, doi: 10.1785/0220200317.

     

    Li Z F, Meier M A, Hauksson E, et al. 2018. Machine learning seismic wave discrimination: application to earthquake early warning. Geophysical Research Letters, 45(10): 4773-4779, doi: 10.1029/2018gl077870.

     

    Lin B H, Jin X, Kang L C, et al. 2021. The research of earthquake magnitude determination based on Convolutional Neural Networks. Chinese Journal of Geophysics (in Chinese), 64(10): 3600-3611, doi: 10.6038/cjg2021O0370.

     

    Liu H Y, Li S Y, Song J D. 2022. Discrimination between earthquake P waves and microtremors via a generative adversarial network. Bulletin of the Seismological Society of America, 112(2): 669-679, doi: 10.1785/0120210231.

     

    Lu J, Behbood V, Hao P, et al. 2015. Transfer learning using computational intelligence: A survey. Knowledge-Based Systems, 80: 14-23, doi: 10.1016/j.knosys.2015.01.010..

     

    Münchmeyer J, Bindi D, Leser U, et al. 2021. Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network. Geophysical Journal International, 226(2): 1086-1104, doi: 10.1093/gji/ggab139.

     

    Ma Q, Jin X, Li S Y, et al. 2013. Automatic P-arrival detection for earthquake early warning. Chinese Journal of Geophysics (in Chinese), 56(7): 2313-2321, doi: 10.6038/cjg20130718.

     

    Maggi A, Ferrazzini V, Hibert C, et al. 2017. Implementation of a multistation approach for automated event classification at Piton de la Fournaise Volcano. Seismological Research Letters, 88(3): 878-891, doi: 10.1785/0220160189.

     

    Meier M A, Ross Z E, Ramachandran A, et al. 2019. Reliable real-time seismic signal/noise discrimination with machine learning. Journal of Geophysical Research: Solid Earth, 124(1): 788-800, doi: 10.1029/2018jb016661.

     

    Mousavi S M, Ellsworth W L, Zhu W Q, et al. 2020. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun., 11(1): 3952, doi: 10.1038/s41467-020-17591-w.

     

    Mousavi S M, Beroza G C. 2022. Deep-learning seismology. Science, 377(6607): eabm4470, doi: 10.1126/science.abm4470.

     

    Mousavi S M, Beroza G C. 2023. Machine learning in earthquake seismology. Annual Review of Earth and Planetary Sciences, 51(1): 105-129, doi: 10.1146/annurev-earth-071822-100323.

     

    Pan Z R, Zhou Y, Miao Z P, et al. 2023. Comparative analysis on instrument intensaity and macroscopic survey intensity of the Menyuan M6.9 earthquake on January, 8, 2022. Plateau Earthquake Research (in Chinese), 35(3): 8-15.

     

    Peng C Y, Jiang P, Ma Q, et al. 2022. Chinese nationwide earthquake early warning system and its performance in the 2022 Lushan M6.1 earthquake. Remote Sensing, 14(17): 4269, doi: 10.3390/RS14174269.

     

    Pölsterl S. 2020. scikit-survival: a library for time-to-event analysis built on top of scikit-learn. J. Mach. Learn. Res., 21: 1-6.

     

    Raffel C, Shazeer N, Roberts A, et al. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21: 1-67.

     

    Ross Z E, Meier M A, Hauksson E. 2018. P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123(6): 5120-5129, doi: 10.1029/2017jb015251.

     

    Saad O M, Chen Y F, Trugman D, et al. 2022. Machine learning for fast and reliable source-location estimation in earthquake early warning. IEEE Geoscience and Remote Sensing Letters, 19: 8025705, doi: 10.1109/lgrs.2022.3142714.

     

    Satriano C, Wu Y M, Zollo A, et al. 2011. Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 31(2): 106-118, doi: 10.1016/j.soildyn.2010.07.007.

     

    Skoumal R J, Brudzinski M R, Currie B S, et al. 2014. Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence. Earth and Planetary Science Letters, 405: 274-280, doi: 10.1016/j.epsl.2014.08.033.

     

    Song J D, Yu C, Li S Y. 2021. Continuous prediction of onsite PGV for earthquake early warning based on least squares support vector machine. Chinese Journal of Geophysics (in Chinese), 64(2): 555-568, doi: 10.6038/cjg2021O0193.

     

    Song J D, Zhu J B, Li S Y. 2023. MEANet: Magnitude estimation via physics-based features time series, an attention mechanism, and neural networks. Geophysics, 88(1): V33-V43, doi: 10.1190/geo2022-0196.1.

     

    Song J D, Zhu J B, Wei Y X, et al. 2023. Backtracking verification of machine learning earthquake early warning magnitude estimation and on-site threshold alarm for Menyuan M6.9 earthquake in Qinghai on January 8, 2022. Chinese Journal of Geophysics (in Chinese), 66(7): 2903-2919, doi: 10.6038/cjg2022Q0050.

     

    Srivastava N, Hinton G, Krizhevsky A, et al. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1): 1929-1958.

     

    Strauss J A, Allen R M. 2016. Benefits and costs of earthquake early warning. Seismological Research Letters, 87(3): 765-772, doi: 10.1785/0220150149.

     

    Su R H, Yuan D Y, Xie H, et al. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake, Qinghai. Acta Seismologica Sinica (in Chinese), 45(5): 797-813.

     

    Talo M, Baloglu U B, Yıldırım Ö, et al. 2019. Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, 54: 176-188, doi: 10.1016/j.cogsys.2018.12.007.

     

    Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: Curran Associates Inc., 6000-6010.

     

    Wang T T, Bian Y J, Zhang Y X, et al. 2023. Classification of earthquakes, explosions and mining-induced earthquakes based on XGBoost algorithm. Computers & Geosciences, 170: 105242, doi: 10.1016/j.cageo.2022.105242.

     

    Weiss K, Khoshgoftaar T M, Wang D D. 2016. A survey of transfer learning. Journal of Big Data, 3(1): 9, doi: 10.1186/s40537-016-0043-6.

     

    Wu Y M, Liang W T, Mittal H, et al. 2016. Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML6.4 meinong (Taiwan) earthquake. Seismological Research Letters, 87(5): 1050-1059, doi: 10.1785/0220160058.

     

    Yang H F, Wang D, Guo R M, et al. 2022. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake, Qinghai, China. Earthquake Research Advances, 2(1): 100113, doi: 10.1016/j.eqrea.2022.100113.

     

    Zhang H C, Jin X, Wei Y X, et al. 2016. An earthquake early warning system in Fujian, China. Bulletin of the Seismological Society of America, 106(2): 755-765, doi: 10.1785/0120150143.

     

    Zhang H C, Melgar D, Sahakian V, et al. 2022. Learning source, path and site effects: CNN-based on-site intensity prediction for earthquake early warning. Geophysical Journal International, 231(3): 2186-2204, doi: 10.1093/gji/ggac325.

     

    Zheng Z, Lin B H, Yu W H, et al. 2024. Predicting instrumental seismic intensity using deep learning and physical features. Chinese Journal of Geophysics (in Chinese), 67 (7): 2712-2728, doi: 10.6038/cjg2023R0521.

     

    Zhu J, Fang L H, Miao F J, et al. 2023a. Deep learning and transfer learning of earthquake and quarry-blast discrimination: applications to southern California and eastern Kentucky. Geophysical Journal International, 236(2): 979-993, doi: 10.1093/gji/ggad463.

     

    Zhu J, Li Z F, Fang L H. 2023b. USTC-Pickers: a Unified Set of seismic phase pickers Transfer learned for China. Earthquake Science, 36(2): 95-112, doi: 10.1016/j.eqs.2023.03.001.

     

    Zhu J B, Li S Y, Ma Q, et al. 2022a. Support vector machine-based rapid magnitude estimation using transfer learning for the Sichuan-Yunnan Region, China. Bulletin of the Seismological Society of America, 112(2): 894-904, doi: 10.1785/0120210232.

     

    Zhu J B, Li S Y, Song J D. 2022b. Hybrid deep-learning network for rapid on-site peak ground velocity prediction. IEEE Transactions on Geoscience and Remote Sensing, 60: 5925712, doi: 10.1109/TGRS.2022.3230829.

     

    Zhu J B, Li S Y, Wei Y X, et al. 2023. On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning. Journal of Asian Earth Sciences, 248: 105610, doi: 10.1016/j.jseaes.2023.105610.

     

    Zhu W Q, Beroza G C. 2019. PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1): 261-273, doi: 10.1093/gji/ggy423.

     

    林彬华, 金星, 康兰池等. 2021. 基于卷积神经网络的地震震级测定研究. 地球物理学报, 64(10): 3600-3611, doi: 10.6038/cjg2021O0370.

     

    马强, 金星, 李山有等. 2013. 用于地震预警的P波震相到时自动拾取. 地球物理学报, 56(7): 2313-2321, doi: 10.6038/cjg20130718.

     

    潘章容, 周扬, 苗在鹏等. 2023. 2022年1月8日青海门源6.9级地震仪器烈度与宏观烈度对比分析. 高原地震, 35(3): 8-15.

     

    宋晋东, 余聪, 李山有. 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568, doi: 10.6038/cjg2021O0193.

     

    宋晋东, 朱景宝, 韦永祥等. 2023. 2022年1月8日青海门源6.9级地震机器学习地震预警震级估计与现地阈值报警的回溯验证. 地球物理学报, 66(7): 2903-2919, doi: 10.6038/cjg2022Q0050.

     

    苏瑞欢, 袁道阳, 谢虹等. 2023. 2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报, 45(5): 797-813.

     

    郑周, 林彬华, 于伟恒等. 2024. 利用深度学习与物理特征预测仪器地震烈度. 地球物理学报, 67(7): 2712-2728, doi: 10.6038/cjg2023R0521.

  • 加载中

(15)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-01-03
修回日期:  2024-05-27
上线日期:  2024-11-10

目录