Research on identifying the airy phase of transmitted channel waves based on generalized S-transform
-
摘要: 透射槽波勘探是查明煤矿工作面地质情况的重要物探方法之一,其频散曲线埃里相识别的合理性直接关系到后续工作面层析成像的准确性。目前,S变换已被广泛应用到频散分析中,然而由于S变换窗函数固定,其应用效果受到限制,为进一步提高频散曲线埃里相的识别精度,本文将窗函数可调的广义S变换引入到频散曲线的分析中。对广义S变换的窗函数采用时间半高宽进行分析,窗函数时间半高宽在给定频率范围内越宽,其时间分辨率低;频率分辨率增高,窗函数宽度越窄,则时间分辨高、频率分辨低。给出了时间半高宽与广义S变换参数的关系式,可根据实际情况定量调节时频分辨率。计算表明,在合理选择广义S变换参数的前提下,广义S变换能有效提高时频分辨率,改善频散曲线埃里相特征,利于解释人员准确拾取透射槽波埃里相。Abstract: Transmission seismic exploration in the coal mining face is one of the important geophysical surveys to figure out the geological hazards of coal seam.The rationality of identifying the airy phase from the transmitted channel waves is closely related to the accuracy of the tomography.Nowadays,S-transform is widely used in the analysis of dispersion curve,however,its application is limited with the fixed window.In order to improve the identification accuracy of the airy phase of the dispersion curve,this paper introduces the generalized S-transform with adjustable window into the analysis of dispersion curve.The window of generalized S-transform is analyzed by temporal full width at half maximum (temporal FWHM).For a frequency range,a wider window indicates a lower temporal resolution and a higher frequency resolution,and a narrower window indicates a higher temporal resolution and a lower frequency resolution.The time-frequency resolution can be adjusted quantitatively according to the relationship between the temporal FWHM and the parameters of generalized S-transform in application.The synthetic and real data result show that the generalized S-transform can effectively improve the time-frequency resolution and the airy phase characteristics of the dispersion curve.It is helpful for the interpreter to pick up the airy phase of the transmitted channel waves accurately.
-
Key words:
- generalized S-transform /
- transmitted channel waves /
- dispersion curve /
- airy phase
-
[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6):1625-1636.
[2] Wu Q, Tu K, Zeng Y F, et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 2019, 44(6):1625-1636.
[3] 胡国泽, 滕吉文, 皮娇龙, 等. 井下槽波地震勘探——预防煤矿灾害的一种地球物理方法[J]. 地球物理学进展, 2013, 28(1):439-451.
[4] Hu G Z, Teng J W, Pi J L, et al. In-seam seismic exploration techniques——a geophsical method predictting coal-mine disaster[J]. Progress in Geophysics, 2013, 28(1):439-451.
[5] 张强, 雍自春, 龙自阳, 等. 槽波地震探测技术在金家渠煤矿首采工作面断层探查中的应用[J]. 煤田地质与勘探, 2018, 46(s1):33-36.
[6] Zhang Q, Yong Z C, Long Z Y, et al. Application of channel wave seismic technique in detection of faults in the first working of Jinjiaqu Colliery[J]. Coal Geology & Exploration, 2018, 46(s1):33-36.
[7] Evison F F. A coal seam as a guide for seismic energy[J]. Nature, 1955, 176(4495):1224-1225.
[8] Krey T C. Channel waves as a tool of applied geophysics in coal mining[J]. Geophysics, 1963, 28(5):701-714.
[9] 王伟, 高星, 李松营, 等. 槽波层析成像方法在煤田勘探中的应用——以河南义马矿区为例[J]. 地球物理学报, 2012, 55(3):1054-1062.
[10] Wang W, Gao X, Li S Y, et al. Channel wave tomography method and its application in coal mine exploration: An example from Henan Yima Mining area[J]. Chinese Journal of Geophysics, 2012, 55(3):1054-1062.
[11] 乐勇, 王伟, 申青春, 等. 槽波地震勘探技术在工作面小构造探测中的应用[J]. 煤田地质与勘探, 2013, 41(4):74-77.
[12] Le Y, Wang W, Shen Q C, et al. Application of ISS in detection of small structures in working face[J]. Coal Geology & Exploration, 2013, 41(4):74-77.
[13] 傅皓淳. 煤田槽波地震勘探中层析成像技术应用研究[D]. 北京:中国地质大学(北京), 2015.
[14] Fu H C. Study on seismic tomography in In-Seam seismic exploration in coal field[D]. Beijing:China University of Geosciences (Beijing), 2015.
[15] Feng L, Zhang Y. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components[J]. Acta Geophysica, 2017, 65(4):757-764.
[16] Li D, Castagna J, Goloshubin G. Investigation of generalized S-transform analysis windows for time-frequency analysis of seismic reflection data[J]. Geophysics, 2016, 81(3):V235-V247.
[17] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum:The S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4):998-1001.
[18] McFadden P D, Cook J G, Forster L M, et al. Decomposition of gear vibration signals by the generalized S transform[J]. Mechanical Systems and Signal Processing, 1999, 13:691-707.
[19] 高静怀, 陈文超, 李幼铭, 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003, 46(4):526-532.
[20] Gao J H, Chen W C, Li Y M, et al. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics, 2003, 46(4):526-532.
[21] Pinnegar R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1):381-385.
[22] 刘喜武, 年静波, 刘洪. 基于广义S变换的吸收衰减补偿方法[J]. 石油物探, 2006, 45(1):9-14.
[23] Liu X W, Nian J B, Liu H. Generalized S-transform based compensation for stratigraphic absorption of seismic attenuation[J]. Geophysical Prospecting for Petroleum, 2006, 45(1):9-14.
[24] Tian J, Song W, Yang F. Enhancing the resolution of seismic data based on the generalized S-transform[J]. Petroleum Science, 2009, 6:153-157.
[25] 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009, 52(1):215-221.
[26] Chen X H, He Z H, Huang D J, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal of Geophysics, 2009, 52(1):215-221.
[27] 夏亚良, 魏小东, 叶玉峰, 等. 广义S变换多频解释技术及其在薄层评价中的应用[J]. 物探与化探, 2019, 43(1):168-175.
[28] Xia Y L, Wei X D, Ye Y F, et al. Generalized S transform multi-frequency interpretation technique and its application in thin reservoir evaluation[J]. Geophysical and Geochemical Exploration, 2019, 43(1):168-175.
[29] 安鹏, 于志龙, 刘专, 等. 敏感频率地震属性在薄层砂体预测中的应用——以松辽盆地肇源地区为例[J]. 物探与化探, 2020, 44(2):321-328.
[30] An P, Yu Z L, Liu Z, et al. The application of sensitive frequency seismic attributes to thin sand body prediction:Exemplified by Zhaoyuan area in Songliao Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):321-328.
[31] 张先武, 高云泽, 方广有. 带有低通滤波的广义S变换在探地雷达层位识别中的应用[J]. 地球物理学报, 2013, 56(1):309-316.
[32] Zhang X W, Gao Y Z, Fang G Y. Application of generalized S transform with lowpass filtering to layer recognition of Ground Penetrating Radar[J]. Chinese Journal of Geophysics, 2013, 56(1):309-316.
[33] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2):398-404.
[34] Shao G Z, Dong J, Dong Z T. The application of generalized S-transform of Rayleigh waves to detecting near-surface fissures[J]. Geophysical and Geochemical Exploration, 2018, 42(2):398-404.
[35] 陈学华, 贺振华. 改进的S变换及在地震信号处理中的应用[J]. 数据采集与处理, 2005, 20(4):449-453.
[36] Chen X H, He Z H. Improved S-transform and its application in seismic signal processing[J]. Journal of Data Acquisition and Processing, 2005, 20(4):449-453.
[37] 程久龙. Love型槽波理论地震图的计算[J]. 山东矿业学院学报, 1994, 13(4):349-353.
[38] Cheng J L. Calculation of theoretical seismograms of Love channel waves[J]. Journal of Shandong Mining Institute, 1994, 13(4):349-353.
[39] Räder D, Schott W, Dresen L, et al. Calculation of dispersion curves and amplitude-depth distributions of love channel waves in horizontally-layered media[J]. Geophysical Prospecting, 1985, 33:800-816.
[40] 杨真, 冯涛, Wang S G. 0.9 m薄煤层SH型槽波频散特征及波形模式[J]. 地球物理学报, 2010, 53(2):442-449.
[41] Yang Z, Feng T, Wang S G. Dispersion characteristics and wave shape mode of SH channel wave in a 0.9 m thin coal seam[J]. Chinese Journal of Geophysics, 2010, 53(2):442-449.
-
计量
- 文章访问数: 395
- PDF下载数: 55