黑方台黄土的孔隙特征及其与湿陷性的关系分析

谢潇, 侯晓坤, 赵权利, 李萍, 李同录, 邓乐娟

谢潇, 侯晓坤, 赵权利, 李萍, 李同录, 邓乐娟. 2016: 黑方台黄土的孔隙特征及其与湿陷性的关系分析. 工程地质学报, 24(s1): 362-368. DOI: 10.13544/j.cnki.jeg.2016.s1.054
引用本文: 谢潇, 侯晓坤, 赵权利, 李萍, 李同录, 邓乐娟. 2016: 黑方台黄土的孔隙特征及其与湿陷性的关系分析. 工程地质学报, 24(s1): 362-368. DOI: 10.13544/j.cnki.jeg.2016.s1.054
XIE Xiao, HOU Xiaokun, ZHAO Quanli, LI Ping, LI Tonglu, DENG Lejuan. 2016: ANALYSIS OF THE RELATIONSHIP BETWEEN THE PORE DISTRIBUTIONS AND COLLAPSIBILITY OF LOESS. JOURNAL OF ENGINEERING GEOLOGY, 24(s1): 362-368. DOI: 10.13544/j.cnki.jeg.2016.s1.054
Citation: XIE Xiao, HOU Xiaokun, ZHAO Quanli, LI Ping, LI Tonglu, DENG Lejuan. 2016: ANALYSIS OF THE RELATIONSHIP BETWEEN THE PORE DISTRIBUTIONS AND COLLAPSIBILITY OF LOESS. JOURNAL OF ENGINEERING GEOLOGY, 24(s1): 362-368. DOI: 10.13544/j.cnki.jeg.2016.s1.054

黑方台黄土的孔隙特征及其与湿陷性的关系分析

基金项目: 

国家重点基础研究发展计划(973计划)资助项目(2014CB744701),国家自然科学基金(41372329,41502286)资助

详细信息
    作者简介:

    谢潇(1992-),女,硕士生,主要从事黄土微结构方面的研究工作.Email:1373669635@qq.com

  • 中图分类号: P642

ANALYSIS OF THE RELATIONSHIP BETWEEN THE PORE DISTRIBUTIONS AND COLLAPSIBILITY OF LOESS

  • 摘要: 为探究黄土的微观结构特征及其对湿陷性的影响,以黑方台10m、20m、26m和30m埋深的Q3黄土为研究对象,采用双线法测得土体的湿陷系数,并用光学显微镜和图像合成技术获得湿陷前后的微结构图像,统计出孔隙的面积和等效半径,分析了颗粒组成及孔隙等效半径随深度的变化规律,探讨了孔隙分布特征对湿陷性的影响。结果表明:随埋深增大,黑方台黄土颗粒粒径减小、大孔隙减少而中小孔隙增加,峰值对应的孔隙等效半径减小,小于10m的孔隙减小;土体的孔隙分布特征会对其湿陷性产生显著的影响,黄土中的大中孔隙越多,其湿陷系数越大,湿陷性越强。
    Abstract: In order to explore the characteristics of loess microstructure and its relationship with collapsibility,took Q3 loess of Heifangtai at different depth as objects, measured its collapsibility coefficient by using two-test collapsible method, and then used the optical microscope and also utilized image synthesis technology to extract its microstructure image before and after collapse, counted pore area and it's equivalent radius, the composition of the particles and equivalent radius of loess pore were analyzed with their changes by the depth, and also explore the effect the pore distributions have on the collapsibility. With depth increasing, particle size of Heifangtai loess reduced, large pores reduced, small and middle pores increased, the peak pore equivalent radius reduced and the volume of the pore,10m decreases; Soil pore distribution character has a significant impact on its collapsibility, the more large and middle sized pore loess has, the bigger its collapsibility coefficient and the stronger its collapsibility is.
  • Alekseeva T V. 2007. Soil microstructure and factors of its formation[J]. Eurasian Soil Science, 40 (6): 649~659.

    Gao G R. 1980. The micro-structure of Chinese loess[J]. Chinese Science Bulletin,(20): 945~948.

    Gao G R. 1980. Loess microstructure Classification and Collapsbility[J]. China,(12): 1203~1209.

    Gu T F,Wang J D,Guo L,et al. 2011. Study of Q3 loess microstructure changes based image processing[J]. Rock Mechanics and Engineering, 30 (S1): 3185~3192.

    Hu R L,Guan G L,Li X Q, et al. 1999. Microstructure effect on the subsidence of loess[J]. Journal of Engineering Geology, 7 (2): 161~167.

    Ma F L,Bai X H,Wang M. 2011. Quantitative analysis of the relationship between loess microstructure and collapsibility[C]//First Midwest China Civil Engineering Annual Conference.

    Nian-Dong Deng, Wang Feng, et al. 2012. The Application of Threshold Segmentation Algorithm in Loess Microstructure Image Analysis[C]//Information Technology and Computer Science-Proceedings of 2012 National Conference on Information Technology and Computer Science.

    SL 237-1999,Specification of soil test[S].Beijing: China water conservancy and hydropower press, 1999.

    Wang Y Y,Teng Z H. 1982. The micro-structure of Chinese loess and its changes in different areas and times[J]. Chinese Science Bulletin,(2): 102~105.

    Wu G H,Wang J D,Ma W,et al. 2016. Uniaxial compression and SEM tests for loess collapsibility at loess plateau of XiFeng[J]. Journal of Engineering Geology, 24 (1):102~108.

    Zhao J B,Chen Y,Yue Y L. 1997. Loess collapsibility and its cause[J]. Journal of Geomechanics,(4): 62~68.

    Zhang L Z,Hu R L,Li X Q,et al. 2008. Analysis system of soil microstructure quantitative and its application[J]. Geological Science and Technology Information, 27 (1): 108~112.

    Zhang M H,Xie Y L,Liu B J. 2005. Loess collapsibility coefficient curves in the cases of moistening(demoistening)[J]. Soil Mechanics, 26 (9): 1363~1368.

    Zhang Y Y,Guo J K. 2004. Review and Discussion on Research of Microstructure of Loess[J]. Science and technology information development and economy,(5): 91~92.

    高国瑞. 1980. 黄土显微结构分类与湿陷性[J]. 中国科学,(12): 1203~1209.

    高国瑞. 1980. 中国黄土的微结构[J]. 科学通报,(20): 945~948.

    谷天峰,王家鼎,郭乐,等. 2011. 基于图像处理的Q3黄土的微观结构变化研究[J]. 岩石力学与工程学报, 30 (S1): 3185~3192.

    胡瑞林,官国琳,李向全,等. 1999. 黄土湿陷性的微结构效应[J]. 工程地质学报, 7 (2): 161~167.

    马富丽,白晓红,王梅. 2011. 黄土微观结构与湿陷性的定量分析[C]//首届中国中西部地区土木建筑学术年会.

    水利水电部. 1999. 土工试验规程(SL 237-1999)[S].北京:中国水利水电出版社.

    王永炎,腾志宏. 1982. 中国黄土的微结构及其在时代上和区域上的变化[J]. 科学通报,(2): 102~105.

    吴光辉,王家鼎,马威,等. 2016. 西峰塬黄土的湿陷性研究[J]. 工程地质学报, 24 (1): 102~108.

    赵景波,陈云,岳应利. 1997. 黄土湿陷性及其成因[J]. 地质力学学报,(4): 62~68.

    张礼中,胡瑞林,李向全,等. 2008. 土体微观结构定量分析系统及应用[J]. 地质科技情报, 27 (1): 108~112.

    张茂花,谢永利,刘保健. 2005. 增(减)湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 26 (9): 1363~1368.

    张玉蕴,郭俊凯. 2004. 黄土微观结构研究的回顾和探讨[J]. 科技情报开发与经济,(5): 91-92.
计量
  • 文章访问数:  1682
  • HTML全文浏览量:  218
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-24
  • 修回日期:  2016-05-19
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回