
贵州典型森林植被群落营养元素生物循环空间信息模型构建
李 茜, 杨胜天, 白晓辉, 吕 涛, 刘瑞禄, 杜 迪
地理科学进展 ›› 2009, Vol. 28 ›› Issue (4) : 1047-1058.
贵州典型森林植被群落营养元素生物循环空间信息模型构建
A forest nutrient cycling spatial model and its application
将生态过程模型中营养元素生物循环数值模拟、基于过程的植被生产力模型与遥感驱动的光能利用率模型相耦合,构建森林植被营养元素生物循环空间信息模型。模型弥补了营养元素生物循环过程模型中空间分析和参数获取复杂的不足,并在植被生产力光能利用率模型中引入营养元素胁迫的定量表达。将模型模块化,耦合于自主开发的EcoHAT系统(EcoHydrology Assessment Tools),以贵州典型森林群落为研究对象,对群落生产力和营养元素生物循环的关键过程的时空演变模式进行了模拟和研究。运用实验数据进行验证,取得良好的效果,可见模型计算可以较为真实地反映区域营养元素生物循环关键过程的时空格局。
Forest nutrient cycling is a crucial parameter in the analysis of forest eco-system. The paper established a forest nutrient cycling spatial model which coupled nutrient cycling process model and remote sensing model of vegetation NPP. Compared with nutrient cycling process model, the forest nutrient cycling spatial model improved the spatial analysis function and made the parameters acquirement easier. The forest nutrient cycling spatial model also complemented the nutrient limitation expression in the vegetation NPP model, which combined the vegetation growth, nutrient cycling and soil chemical property together. The model was developed using module integration technique and coupled in Ecohydrology Assessment Tools. Applying the forest nutrient cycling spatial model, the research simulates and analyzes the NPP and the patterns of nutrient bio-cycling in the typical plant community in Guizhou province. Compared with the observed data, the simulated spatial results are credible and the forest nutrient cycling model can simulate the spatio-temporal patterns of nutrient bio-cycling processes.
营养元素生物循环 / NPP / 森林 / 光能利用率模型 / EcoHAT {{custom_keyword}} /
nutrient cycling / NPP / forest ecosystem / light efficiency model / process model / EcoHAT {{custom_keyword}} /
[1] 李俊清,牛树奎.森林生态学.北京:高等教育出版社,2006.
[2] Onyekwelu J C, Mosandl R, Stimm B. Productivity, site evaluation and state of nutrition of Gmelina arborea plantations in Oluwa and Omo forest reserves, Nigeria. Forest Ecology and Management,2006,229: 214~227.
[3] 钟继洪,李淑仪,蓝佩玲.刚果按人工林营养元素生物循环研究.水土保持学报,2004,18(6):45~62.
[4] 何斌,秦武明,余浩光,等.不同年龄阶段马占相思( Acacia mangium )人工林营养元素的生物循环.生态学报,2007,27 (12): 5158~5167.
[5] 郭起荣. FORCYTE森林生态系统经营模拟模型.江西林业科技,2000,6:43~46.
[6] Kramer K, Mohren G M J. Sensitivity of FORGRO to climatic change scenarios: A case study on Betula pubescens, Fagus sylvatica and Quercus robur in The Netherlands. Climatic-Change,1996,34(2):231~237.
[7] Arp P A, Oja T.Sulphate/nitrate loadings on forest soils: forest biomass and nutrient cycling modelling. Critical Loads for Nitrogen - A Workshop Report,1992,41:307~358.
[8] 孙睿,朱启疆.陆地植被净第一性生产力的研究.应用生态学报, 1999, 10(6):757~760.
[9] 黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000,24(2):175~179.
[10] Kirschbaum M U F. Cen W, a forest growth model with linked carbon, energy, nutrient and water cycles . Ecological Modelling, 1999, 118: 17~59.
[11] Tiktak A, Hans J M, Grinsven V. Review of sixteen forest-soil-atmosphere models. Ecological Modelling,1995,83:35~53.
[12] 肖乾广,陈维英,盛永伟,等.用NOAA气象卫星的AVHRR遥感资料估算中国的第一性生产力.植物学报, 1996, 38(1):35~39.
[13] 张佳华,符淙斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报,1999,28(2):129~132.
[14] 马耀明,王介民,Menenti M,等.卫星遥感结合地面观测估算非均匀地表区域能量通量.气象学报,1999,57(2):180~187.
[15] 张百平. 贵州森林资源动态变化. 地理研究,2003,22(6):725~729.
[16] 周运超,潘根兴.茂兰森林生态系统对岩溶环境的适应与调节.中国岩溶,2001,20(1):47~52.
[17] 龙健,李娟,邓启琼,等.贵州喀斯特山区石漠化土壤理化性质及分形特征研究.土壤通报,2006,37(4):635~639.
[18] Arp P A, Oja T. A forest soil vegetation atmosphere model (ForSVA). I. Concepts. Ecological Modelling, 1997, 95: 211~224.
[19] Arp P A, Oja T. A forest soil vegetation atmosphere model (ForSVA). II: Application to northern tolerant hardwoods.1997, 95: 245~247.
[20] Zhua Z X, Arp P A, Meng F R, et al. A forest nutrient cycling and biomass model (ForNBM) based onyear-round, monthly weather conditions, part I: assumption, structure and processing. Ecological Modelling, 2003, 169: 347~360.
[21] Zhua Z X, Arp P A, Meng F R, et al. A forest nutrient cycling and biomass model (ForNBM) based onyear-round, monthly weather conditions, part II: assumption, structure and processing. Ecological Modelling, 2003, 170: 13~27.
[22] Valentina Krysanova, et al. SWIM user manual,2000.
[23] 朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟.科学通报,2006,51(6): 700~706.
[24] 朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报, 2001, 25(5):603~608.
[25] 李贵才.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究.北京:中国科学院遥感应用研究所博士学位论文,2004.
[26] 周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193~200.
[27] 张佳华,符淙斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报,1999,28(2):129~132.
[28] Monsi M, Saeki T.Vber den Lichtfactor in den Pflanzengesellschaften und sein Bedeutung für die Stoffproduktion. Japan J. Bot.1953, 14: 22~52.
[29] 张继祥,毛志泉,魏钦平,等.美国黑核桃实生苗生态生理过程对环境因素响应的数值模拟(III):植株冠层光合作用数理模型.生物数学学报, 2006,21(3): 401~411.
[30] 唐世浩,朱启疆,孙睿.基于方向反射率的大尺度叶面积指数反演算法及其验证.自然科学进展, 2006,16(3):331~337.
[31] Jones C A. C-4 Grasses and Cereals. John Wiley & Sons, Inc., New York. 1985:419.
[32] Bemier B, Brazeau M.Nutrient deficiency symptoms associated with sugar maple dieback and decline in the Quebec Appalachians. Can. J. For. Res. , 1988, 18: 762~767.
[33] Mader D L, Thompson B W. Foliar and soil nutrients in relation to sugar maple decline. Soil Sci. Soc. Am. Proc. , 1969, 33: 794~800.
[34] Driessche R V D. Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. , 1974, 40: 347~394.
[35] 丁贵杰,王鹏程,严仁发.马尾松纸浆商品用材林生物量变化规律和模型研究.林业科学,1998,34(1): 33~41.
[36] 冯宗炜.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.
[37] 彭少麟.鼎湖山马尾松种群生产量初步研究 .热带亚热带森林生态系统研究, 1989, 5: 75~82.
[38] Potter C S. Stemflow nutrient inputs to soil in a successional hardwood forest . Plant and Soil,1992, 140:249~254.
[39] 冯宗炜.中国森林生态系统的生物量和生产力.北京: 科学出版社,1999.
[40] 姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征.南京林业大学学报(自然科学版),2006,30(5):83~87.
国家重点基础研究发展项目(2005CB422207)
/
〈 |
|
〉 |