浅海瞬变电磁全波形响应特征及探测能力分析

赵越, 许枫, 李貅, 鲁凯亮. 2019. 浅海瞬变电磁全波形响应特征及探测能力分析. 地球物理学报, 62(4): 1526-1540, doi: 10.6038/cjg2019L0780
引用本文: 赵越, 许枫, 李貅, 鲁凯亮. 2019. 浅海瞬变电磁全波形响应特征及探测能力分析. 地球物理学报, 62(4): 1526-1540, doi: 10.6038/cjg2019L0780
ZHAO Yue, XU Feng, LI Xiu, LU KaiLiang. 2019. Exploration capability of transmitter current waveform on shallow water TEM response. Chinese Journal of Geophysics (in Chinese), 62(4): 1526-1540, doi: 10.6038/cjg2019L0780
Citation: ZHAO Yue, XU Feng, LI Xiu, LU KaiLiang. 2019. Exploration capability of transmitter current waveform on shallow water TEM response. Chinese Journal of Geophysics (in Chinese), 62(4): 1526-1540, doi: 10.6038/cjg2019L0780

浅海瞬变电磁全波形响应特征及探测能力分析

  • 基金项目:

    国家自然科学基金项目(61801470)与中国科学院声学研究所"青年英才计划"项目(QNYC201729)共同资助

详细信息
    作者简介:

    赵越, 女, 1989年生, 博士, 研究方向为瞬变电磁法理论与应用.E-mail:zhaoyue_0430@126.com

    通讯作者: 许枫, 男, 1969年生, 研究员, 博士生导师, 研究方向为水下目标探测与成像.E-mail:xf@mail.ioa.ac.cn
  • 中图分类号: P631

Exploration capability of transmitter current waveform on shallow water TEM response

More Information
  • 瞬变电磁法在浅海工程勘探等领域受到了越来越多的关注.目前浅海瞬变电磁仍处于应用初期,相关研究少且未有成熟装备问世,有必要研究其探测能力并为观测系统选取最佳观测参数.本文以几种典型发射波形为例,采用褶积算法细致分析了不同发射波形条件下浅海瞬变电磁on-/off-time响应受海底介质电导率、磁导率及发射波形脉宽等参数的影响特征与规律;通过三维正演并设定极限探测深度阈值,进一步分析不同发射波形on-/off-time期间浅海瞬变电磁探测能力及对典型三维目标体的极限探测深度.基于本文研究成果,可为浅海瞬变电磁探测装置设计、观测系统的参数选取及试验参数的选取等提供了一些有价值的理论借鉴.

  • 加载中
  • 图 1 

    一维层状海底地质模型示意图

    Figure 1. 

    Sketch map of 1D layered sea geological model

    图 2 

    不同海水深度影响下海洋瞬变电磁归一化响应曲线对比图

    Figure 2. 

    The normalized dBz/dt response for different seawater depth.

    图 3 

    半正弦波全时响应结果与齐彦福等(2017)计算结果对比图

    Figure 3. 

    Comparison of the TEM response for a half-sine transmitting wave and its relative errors

    图 4 

    四种常见发射电流波形

    Figure 4. 

    Schematic plot of typical transmitter current waveform

    图 5 

    发射电流波形频谱特征

    Figure 5. 

    Spectrum analysis in different transmitter current waveform

    图 6 

    Bz与dBz/dt时间域全波形响应随沉积层电性变化曲线

    Figure 6. 

    Full-wave TEM response of shallow sea with different transmitter current waveform

    图 7 

    Bz和dBz/dt时间域全波形响应随磁导率变化曲线

    Figure 7. 

    Full-wave TEM response of shallow sea with different magnetic permeability

    图 8 

    不同脉宽条件下全域视电阻率曲线

    Figure 8. 

    Apparent resistivity of shallow sea TEM with different pulse width

    图 9 

    3D模型示意图

    Figure 9. 

    A 3D model with single abnormal body

    图 10 

    单个异常体3D模型TEM响应结果图

    Figure 10. 

    Results of the 3-D model with an abnormal body

    图 11 

    不同发射波形探测深度对比

    Figure 11. 

    Exploration depth of dBz/dt and Bz responses with different transmitter current waveform

    图 12 

    不同关断时间条件下梯形波发射Bz与dBz/dt响应随掩埋深度变化曲线

    Figure 12. 

    Bz and dBz/dt response of trapezoid transmitter current waveform with different turn-off time

    表 1 

    不同发射波形dBz/dtBz响应探测深度

    Table 1. 

    Exploration depth of dBz/dt and Bz response for different transmitter current waveform

    探测深度/m 方波 梯形波(Δ1=0.2 ms) 梯形波(Δ1=0.5 ms) 梯形波(Δ1=1.0 ms) 三角波 半正弦波
    On-time dBz/dt 6.596 6.304 5.951 5.492 6.618 6.750
    Off-time dBz/dt 6.286 6.305 6.354 6.416 6.471 6.469
    On-time Bz 7.153 7.127 7.070 6.776 6.715 7.265
    Off-time Bz 7.296 7.337 7.345 7.373 7.394 7.371
    下载: 导出CSV
  •  

    Balch S J, Boyko W P, Paterson N R. 2003. The AeroTEM airborne electromagnetic system. The Leading Edge, 22(6):562-566. doi: 10.1190/1.1587679

     

    Barsukov P O, Fainberg E B. 2014. Transient marine electromagnetics in shallow water:A sensitivity and resolution study of the vertical electric field at short ranges. Geophysics, 79(1):E39-E49, doi:10.1190/geo2013-0125.1.

     

    Cheesman S J, Edwards R N, Chave A D. 1987. On the theory of sea-floor conductivity mapping using transient electromagnetic systems. Geophysics, 52(2):204-217, doi:10.1190/1.1442296.

     

    Chen S D, Lin J, Zhang S. 2012. Effect of transmitter current waveform on TEM response. Chinese J. Geophys. (in Chinese), 55(2):709-716, doi:10.6038/j.issn.0001-5733.2012.02.035.

     

    Chen T Y, Hodges G, Miles P. 2015. MULTIPULSE-high resolution and high power in one TDEM system. Exploration Geophysics, 46(1):49-57, doi:10.1071/EG14027.

     

    Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75(5):75A67-75A81, doi:10.1190/1.3483451.

     

    Doll W E, Gamey T J, Holladay J S, et al. 2010. Results of a high-resolution airborne TEM system demonstration for unexploded ordnance detection. Geophysics, 75(6):B211-B220, doi:10.1190/1.3505817.

     

    Edwards R N, Chave A D. 1986. A transient electric dipole-dipole method for mapping the conductivity of the sea floor. Geophysics, 51(4):984-987. doi: 10.1190/1.1442156

     

    Eidesmo T, Ellingsrud S, MacGregor L M, et al. 2002. Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, 20(3):144-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8492c69e7708b3ee6f9690aef28bdbed

     

    Everett M E, Edwards R N. 1993. Transient marine electromagnetics:the 2.5-D forward problem. Geophysical Journal International, 113(3):545-561. doi: 10.1111/gji.1993.113.issue-3

     

    Evjen H M. 1938. Depth factors and resolving power of electrical measurements. Geophysics, 3(2):78-95. doi: 10.1190/1.1439485

     

    Fan T, Cheng J Y, Wang B L, et al. 2016. Imaging method of TEM pseudo wave-field and application of unexploded ordnance detection. Progress in Geophysics (in Chinese), 31(5):2326-2332, doi:10.6038/pg20160561.

     

    Fountain D, Smith R, Payne T, et al. 2005. A helicopter time-domain EM system applied to mineral exploration:system and data. First Break, 23:73-78. http://earthdoc.eage.org/publication/download/?publication=26741

     

    Goto T, Takekawa J, Mikada H, et al. 2011. Marine electromagnetic sounding on submarine massive sulphides using remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV).//Proceedings of the 10th SEGJ International Symposium. Kyoto: Society of Exploration Geophysicists of Japan, 1-5.

     

    He J H, Bao L Z. 1999. The situation and progress of marine electromagnetic method research. Progress in Geophysics (in Chinese), 14(1):7-39. http://www.adsabs.harvard.edu/abs/1992ECSS...35..353R

     

    Huang S, Yu X S, Yan Z J, et al. 2014.1-D modeling of marine electromagnetic method for detecting underwater UXO. Scientific Journal of Earth Science, 4(2):93-97. http://j-es.org/cn/paperinfo/17441.shtml

     

    Kerry K. 2009.1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2):F9-F20, doi:10.1190/1.3058434.

     

    Li H, Lin J, Wang Y, et al. 2006. Equipment parameters and experiment of sea-floor transient electromagnetic method. Chinese Journal of Radio Science (in Chinese), 21(5):659-664. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbkxxb200605005

     

    Li J H, Zhu Z Q, Lu G Y, et al. 2013. Study on three-dimensional forward of transient electromagnetic method excited by loop source. Progress in Geophysics (in Chinese), 28(2):754-765, doi:10.6038/pg20130224.

     

    Li Y G, Constable S. 2010. Transient electromagnetic in shallow water:insights from 1D modeling. Chinese J. Geophys., 53(3):737-742, doi:10.3969/j.issn.0001-5733.2010.03.029.

     

    Liu C S, Lin J. 2006. Transient electromagnetic response modeling of magnetic source on seafloor and the analysis of seawater effect. Chinese J. Geophys. (in Chinese), 49(6):1891-1898. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200606039

     

    Liu G M. 1998. Effect of transmitter current waveform on airborne TEM response. Exploration Geophysics, 29(1-2):35-41. doi: 10.1071/EG998035

     

    Nabighian M N. 1987. Electromagnetic Methods in Applied Geophysics:Theory (Volume 1). Tulsa:SEG, 217-221. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1209.5839

     

    Nakayama K, Saito A. 2014. Development of new marine TDEM systems for the ocean bottom hydrothermal deposits.//84th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 850-854.

     

    Qi Y F, Yin C C, Liu Y H, et al. 2017.3D time-domain airborne EM full-wave forward modeling based on instantaneous current pulse. Chinese J. Geophys. (in Chinese), 60(1):369-382, doi:10.6038/cjg20170131.

     

    Raiche A P, Spies B R. 1981. Coincident loop transient electromagnetic master curves for interpretation of two-layer earths. Geophysics, 46(1):53-64. doi: 10.1190/1.1441139

     

    Sattel D. 1998. Improving conductivity models using on-time EM data. Exploration Geophysics, 29(3-4):605-608. doi: 10.1071/EG998605

     

    Smith R, Annan P. 1998. The use of B-field measurements in an airborne time-domain system:Part Ⅰ:Benefits of B-field versus dB/dt data. Exploration Geophysics, 29(1-2):24-29. doi: 10.1071/EG998024

     

    Swidinsky A, Hölz S, Jegen M. 2012. On mapping seafloor mineral deposits with central loop transient electromagnetics. Geophysics, 77(3):E171-E184, doi:10.1190/geo2011-0242.1.

     

    Weiss C J. 2007. The fallacy of the "shallow-water problem" in marine CSEM exploration. Geophysics, 72(6):A93-A97, doi:10.1190/1.2786868.

     

    Witherly K, Irvine R, Morrison E. 2004. The Geotech VTEM time domain helicopter EM system. ASEG Extended Abstracts, 2004(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1071/ASEG2004ab162

     

    Yin C, Smith R S, Hodges G, et al. 2008. Modeling results of on-and off-time B and dB/dt for time-domain airborne EM systems.//Extended Abstracts, 70th Annual EAGE Conference and Exhibition. Rome, 1-4.

     

    Yin C C, Ren X Y, Liu Y H, et al. 2015. Exploration capability of airborne TEM systems for typical targets in the subsurface. Chinese J. Geophys. (in Chinese), 58(9):3370-3379, doi:10.6038/cjg20150929.

     

    Zhao Y, Li X, Wang Y P. 2015. Full-domain apparent resistivity definition for large-loop TEM. Progress in Geophysics (in Chinese), 30(4):1856-1863, doi:10.6038/pg20150446.

     

    Zhao Y, Xu F, Li X, et al. 2017. Characteristics of 3D TEM response on seafloor with the central loop configuration. Oil Geophysical Prospecting (in Chinese), 52(5):1093-1102, doi:10.13810/j.cnki.issn.1000-7210.2017.05.024.

     

    Zhi Q Q. 2015. Study on wave field transformation and migration imaging of MTEM data[Master's thesis](in Chinese). Xi'an: Chang'an University.

     

    Zhou J M, Li X, Qi Z P. 2016. Transient electromagnetic response analysis for anisotropic media in shallow water. Oil Geophysical Prospecting (in Chinese), 51(4):821-830, doi:10.13810/j.cnki.issn.1000-7210.2016.04.025.

     

    陈曙东, 林君, 张爽. 2012.发射电流波形对瞬变电磁响应的影响.地球物理学报, 55(2):709-716, doi:10.6038/j.issn.0001-5733.2012.02.035. http://www.geophy.cn//CN/abstract/abstract8448.shtml

     

    范涛, 程建远, 王保利等. 2016.瞬变电磁虚拟波场成像方法及其对未爆弹探测的试验研究.地球物理学进展, 31(5):2326-2332, doi:10.6038/pg20160561.

     

    何继善, 鲍力知. 1999.海洋电磁法研究的现状和进展.地球物理学进展, 14(1):7-39. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199901001.htm

     

    黄颂, 于新生, 阎子衿等. 2014.海底未爆物的电磁探测方法仿真研究.地球科学期刊, 4(2):93-97. http://www.cqvip.com/QK/71676X/201402/661774002.html

     

    李慧, 林君, 王艳等. 2006.海底瞬变电磁探测技术的装置参数研究及实验.电波科学学报, 21(5):659-664. doi: 10.3969/j.issn.1005-0388.2006.05.005

     

    李建慧, 朱自强, 鲁光银等. 2013.回线源瞬变电磁法的三维正演研究.地球物理学进展, 28(2):754-765, doi:10.6038/pg20130224.

     

    刘长胜, 林君. 2006.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报, 49(6):1891-1898. doi: 10.3321/j.issn:0001-5733.2006.06.039 http://www.geophy.cn//CN/abstract/abstract512.shtml

     

    齐彦福, 殷长春, 刘云鹤等. 2017.基于瞬时电流脉冲的三维时间域航空电磁全波形正演模拟.地球物理学报, 60(1):369-382, doi:10.6038/cjg20170131. http://www.geophy.cn//CN/abstract/abstract13368.shtml

     

    殷长春, 任秀艳, 刘云鹤等. 2015.航空瞬变电磁法对地下典型目标体的探测能力研究.地球物理学报, 58(9):3370-3379, doi:10.6038/cjg20150929. http://www.geophy.cn//CN/abstract/abstract11810.shtml

     

    赵越, 李貅, 王祎鹏. 2015.大回线源瞬变电磁全域视电阻率定义.地球物理学进展, 30(4):1856-1863, doi:10.6038/pg20150446.

     

    赵越, 许枫, 李貅等. 2017.中心回线海底三维瞬变电磁响应规律分析.石油地球物理勘探, 52(5):1093-1102, doi:10.13810/j.cnki.issn.1000-7210.2017.05.024.

     

    智庆全. 2015. MTEM波场变换与偏移成像方法研究[硕士论文].西安: 长安大学.

     

    周建美, 李貅, 戚志鹏. 2016.浅水域各向异性地层中的瞬变电磁响应分析.石油地球物理勘探, 51(4):821-830, doi:10.13810/j.cnki.issn.1000-7210.2016.04.025.

  • 加载中

(12)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-12-21
修回日期:  2018-12-03
上线日期:  2019-04-05

目录