秦岭造山带上地幔各向异性及相关的壳幔耦合型式

吴逸影, 邓斯壮, 钮凤林, 贺巍, 吴汉宁. 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式. 地球物理学报, 64(5): 1608-1619, doi: 10.6038/cjg2021O0390
引用本文: 吴逸影, 邓斯壮, 钮凤林, 贺巍, 吴汉宁. 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式. 地球物理学报, 64(5): 1608-1619, doi: 10.6038/cjg2021O0390
WU YiYing, DENG SiZhuang, NIU FengLin, HE Wei, WU HanNing. 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting. Chinese Journal of Geophysics (in Chinese), 64(5): 1608-1619, doi: 10.6038/cjg2021O0390
Citation: WU YiYing, DENG SiZhuang, NIU FengLin, HE Wei, WU HanNing. 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting. Chinese Journal of Geophysics (in Chinese), 64(5): 1608-1619, doi: 10.6038/cjg2021O0390

秦岭造山带上地幔各向异性及相关的壳幔耦合型式

  • 基金项目:

    国家自然科学基金(91855211,41674070,41702233,41774030)资助

详细信息
    作者简介:

    吴逸影, 女, 1989年生, 博士研究生, 主要从事地球物理学和大陆动力学研究.E-mail: yiyingwu@stumail.nwu.edu.cn

    通讯作者: 吴汉宁, 男, 教授, 博士生导师, 主要从事地球物理学和大陆动力学研究.E-mail: wuhn2506@nwu.edu.cn
  • 中图分类号: P315

Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting

More Information
  • 秦岭是具有复杂地壳结构、经历长期构造演化的复合型大陆造山带.本文通过地震资料精细反演上地幔各向异性,探索秦岭造山带构造演化及成因动力.采用最小切向能量法、最小特征值法和"叠加"分析法求得覆盖秦岭造山带及周边地区41个地震台站的SKS横波分裂结果:快波偏振方向(φ)和快、慢波的时间延迟(δt),据此绘制了秦岭造山带上地幔各向异性图.将已发表的地表GPS观测结果与上地幔各向异性相结合作上地幔变形因素分析,发现秦岭造山带自西向东的上地幔变形因素不是单一垂直连贯变形或地幔流动,而是共存的.同时,其上地幔变形的主控因素有区域性变化.研究表明秦岭造山带西、中部上地幔变形以壳幔垂直连贯变形为主,属壳幔强耦合,东部壳、幔耦合变弱,上地幔变形以简单地幔流动为主控因素.同时,SKS快波偏振方向(φ)于秦岭造山带显示出南缘略向北凸、北缘略向南凸的弧形展布,反映了造山带两侧刚性较强的扬子地块与鄂尔多斯地块旋转与秦岭造山带南北缘弧形流动有关.

  • 加载中
  • 图 1 

    秦岭造山带及周边构造示意图(修改自Dong et al., 2011)

    Figure 1. 

    Tectonic overview map of the Qinling Orogenic Belt and adjacent region (Modified from Dong et al., 2011)

    图 2 

    本研究使用的地震台站分布

    Figure 2. 

    Simplified map of distributions of the seismic stations

    图 3 

    地震事件位置分布图

    Figure 3. 

    Distribution of earthquaks in the study region

    图 4 

    SKS分裂的数据分析实例

    Figure 4. 

    SKS wave splitting result of an event

    图 5 

    台站GS.TSS (a)最小切向量和(b)最小特征值加权等值线图

    Figure 5. 

    Weighted summation of the transverse energy ET and the smaller eigenvalue Λ2

    图 6 

    SKS横波分裂结果对比图

    Figure 6. 

    The measured fast directions and splitting times at the 32 stations compared with the measurements estimated by Yu et al. (2016) and Chang (2016)

    图 7 

    秦岭造山带上地幔变形示意图

    Figure 7. 

    Simple model of Upper mantle deformation in QOB

    表 1 

    秦岭造山带SKS分裂参数

    Table 1. 

    SKS splitting parameters for stations beneath Qinling orogenic belt

    台站名 最小切向能量 最小特征值
    φ Δφ δt Δδt φ Δφ δt Δδt
    GS.CXT 121 6 1 1.02 125 7 0.7 0.42
    GS.DBT 99 8 0.9 0.32 112 6 1.2 0.24
    GS.LTT 86 22 0.7 0.34 75 22 0.62 0.24
    GS.MXT 121 5 1.88 0.72 120 6 1.72 0.34
    GS.SFT 49 22 0.84 0.74 147 22 0.16 0.32
    GS.WDT 62 22 0.44 0.26 85 22 0.4 0.18
    GS.WSH 125 5 1.18 0.44 128 6 1.1 0.46
    GS.WXT 113 8 2.22 1.6 109 9 1.9 0.6
    GS.ZHC 125 6 1.18 0.62 129 10 0.58 0.6
    GS.ZHQ 108 7 2.42 1.12 116 22 0.36 0.4
    HA.DA 64 16 1.44 0.72 112 22 0.92 0.3
    HA.LS 96 21 0.6 0.3 92 22 0.58 0.24
    HA.LYN 84 22 0.44 0.18 86 22 0.44 0.16
    HA.NY 146 12 2 2 159 22 0.16 0.28
    HB.DJI 95 11 1.16 0.32 84 14 0.96 0.36
    HB.YXI 93 22 0.38 0.28 79 22 0.3 0.24
    SC.REG 122 5 1.62 0.48 124 6 0.74 0.18
    SC.SPA 51 12 1.3 0.52 59 12 1.22 0.44
    SN.ANKG 86 22 0.28 0.18 95 22 0.34 0.18
    SN.FUPI 163 22 0.14 0.16 136 19 0.3 0.24
    SN.HUAX 86 17 0.66 0.2 96 12 0.74 0.18
    SN.HUYT 98 12 1.2 0.6 48 14 0.76 0.36
    SN.HZHG 98 19 0.42 0.24 101 13 0.46 0.22
    SN.JYAT 48 22 0.28 0.48 66 22 0.16 0.28
    SN.LANT 78 13 0.84 0.26 82 7 0.9 0.16
    SN.LINT 94 12 1.14 0.32 104 14 1.2 0.24
    SN.LIYO 91 8 0.76 0.16 99 9 0.86 0.16
    SN.LOXT 120 12 0.76 1.32 121 9 1.12 0.92
    SN.LUYA 121 6 1.36 0.8 120 10 0.46 0.54
    SN.MEIX 98 5 1 0.18 104 5 1.1 0.14
    SN.MIAX 63 22 0.38 0.22 69 22 0.36 0.2
    SN.NSHT 59 17 1.16 0.72 88 16 0.64 0.28
    SN.QLIT 81 9 1.04 0.24 91 14 1.08 0.24
    SN.SHAZ 97 22 0.24 0.2 79 22 0.16 0.14
    SN.SHNA 96 10 1.04 0.3 97 12 1.06 0.24
    SN.XAN 87 8 1.18 0.24 94 11 1.24 0.22
    SN.XANT 93 11 1.28 0.48 87 22 1.28 0.52
    SN.XIXI 55 7 0.74 0.16 64 11 0.64 0.14
    SN.ZOZ1 85 22 0.88 0.88 91 14 1.08 0.36
    SN.ZOZT 96 8 1.08 0.24 108 7 1.34 0.22
    SX.YJI 85 22 1.1 0.7 35 11 0.76 0.24
    下载: 导出CSV
  •  

    Chang L J, Ding Z F, Wang C Y, et al. 2016. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China. Chinese Journal of Geophysics (in Chinese), 59(11): 4035-4047. http://www.researchgate.net/publication/286855874_Upper_mantle_anisotropy_beneath_the_southern_segment_of_North-South_tectonic_belt_China

     

    Chang L J, Ding Z F, Wang C Y, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699: 93-101, doi:10.1016/j.tecto.2017.01.025.

     

    Chen H, Hu J M, Qu H J, et al. 2011. Early Mesozoic structural deformation in the Chuandian N-S Tectonic Belt, China. Science China Earth Sciences, 54(11): 1651-1664. doi: 10.1007/s11430-011-4261-7

     

    Chen J H, Liu Q Y, Li S C, et al. 2005. Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block. Chinese Journal of Geophysics (in Chinese), 48(2): 333-342. http://www.oalib.com/paper/1567657

     

    Ding W X, Fu Y Y, Gao Y, et al. 2017. Phase velocity tomography of Rayleigh in Qinling-Dabie and its adjacent areas using ambient seismic noise. Chinese Journal of Geophysics (in Chinese), 60(8): 2959-2968, doi:10.6038/cjg20170805.

     

    Ding Z F, Zeng R S. 1996. Observation and study of shear wave anisotropy in Tibetan Plateau. Acta Geophysica Sinica (in Chinese), 39(2): 211-220. http://www.researchgate.net/publication/292876371_Observation_and_study_of_shear_wave_anisotropy_in_Tibetan_Plateau

     

    Dong Y P, Zhang G W, Neubauer F, et al. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

     

    Dong Y P, Safonova I, Wang T. 2016. Tectonic evolution of the Qinling orogen and adjacent orogenic belts. Gondwana Research, 30: 1-5. doi: 10.1016/j.gr.2015.12.001

     

    Fan J X, Ma J, Gan W J. 2003. Movement of Ordos block and alternation of activity along its boundaries. Science in China Series D: Earth Sciences, 46(2): 168-180. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997714.html

     

    Forsyth D, Uyedaf S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 43(1): 163-200. doi: 10.1111/j.1365-246X.1975.tb00631.x

     

    Gao Y, Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland. Progress in Geophysics (in Chinese), 20(1): 180-185. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ20050100V.htm

     

    Gao Y, Shi Y T, Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake. Chinese Science Bulletin (in Chinese), 63(19): 1934-1948. doi: 10.1360/N972018-00317

     

    He W G, Chen Y S, Ye Q D, et al. 2015. Ambient noise Love-wave tomography in Qinling orogeny and surrounding area. Progress in Geophysics (in Chinese), 30(1): 47-56, doi:10.6038/pg20150108.

     

    Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203: 629-631. doi: 10.1038/203629a0

     

    Hu Y X, Cui D X, Ji L Y, et al. 2011. Seismic anisotropy of upper mantle in Ordos block and adjacent regions. Chinese Journal of Geophysics (in Chinese), 54(6): 1549-1558, doi:10.3969/j.issn.0001-5733.2011.06.014.

     

    Huang W, Wu Z W. 1992. evolution of the qinling orogenic belt. Tectonics, 11(2): 371-380. doi: 10.1029/91TC02419

     

    Huang Y, Li Q H, Zhang Y S, et al. 2011. Crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang Fault Zone and adjacent areas. Chinese Journal of Geophysics (in Chinese), 54(10): 2549-2559, doi:10.3969/j.issn.0001-5733.2011.10.012.

     

    Huang Z X. 2011. Velocity anisotropy in the crust and upper mantle of North China. Chinese Journal of Geophysics (in Chinese), 54(3): 681-691, doi:10.3969/j.issn.0001-5733.2011.03.007.

     

    Jenkins G M, Watts D G. 1968. Spectral Analysis and Its Applications. San Francisco: Holden-Day, 136-139.

     

    Ji S C, Wang Q, Sun S S, et al. 2008. Continental extrusion and seismicity in China. Acta Geologica Sinica (in Chinese), 82(12): 1644-1667. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200812005.htm

     

    Kosarev G L, Makeyeva L I, Vinnik L P. 1984. Anisotropy of the mantle inferred from observations of P to S converted waves. 76(1): 209-220.

     

    Li J et al. 2011. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau. Phys. Earth Planet. Inter. , 189, 157-170. doi: 10.1016/j.pepi.2011.08.009

     

    Li S, Feng M, An J M, et al. 2014. Azimuthal anisotropy of Rayleigh wave in Qinling and its adjacent areas. Acta Seismologica Sinica (in Chinese), 36(4): 531-545. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXB201404001.htm

     

    Li T, Ni S B. 1997. Element abundances of the continental lithosphere in China. Geology and Prospecting (in Chinese), 33(1): 31-37. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199701011.htm

     

    Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese Journal of Geophysics (in Chinese), 49(5): 1359-1368. http://www.researchgate.net/publication/285875210_The_Poisson_ratio_and_crustal_structure_across_the_NE_Tibetan_Plateau_determined_from_receiver_functions

     

    Li Y K, Gao R, Gao J W, et al. 2015. Characteristics of crustal velocity structure along Qingling orogenic belt. Progress in Geophysics (in Chinese), 30(3): 1056-1069, doi:10.6038/pg20150309.

     

    Liu G, Gao Y, Shi Y T. 2017. Shear-wave splitting in Qinling Orogen and its both sides. Chinese Journal of Geophysics (in Chinese), 60(6): 2326-2337, doi:10.6038/cjg20170624.

     

    Liu J H, Liu F T, Sun Y M, et al. 1995. Seismic tomography beneath the qinlingdabie orogenic belts and both the northern and southern fringes. Acta Geopgysica Sinica (in Chinese), 38(1): 46-54. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX501.004.htm

     

    Liu M J, Fan J C, Han Y J, et al. 2011. Relationship between the movements of Ordos and Tarim blocks and strong earthquakes in China continent. Earthquake (in Chinese), 31(1): 127-134. http://www.researchgate.net/publication/293007659_Relationship_between_the_movements_of_Ordos_and_Tarim_blocks_and_strong_earthquakes_in_China_continent?ev=auth_pub

     

    Liu Y Y, Yang W R, Sen Y S N, et al. 1993. Some paleomagnetic results on North China, Qinling and Yangtze blocks. Earth Science Journal of China University of Geosciences (in Chinese), 18: 635-641, +672. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305013.htm

     

    Luo Y, Huang Z X, Peng Y J, et al. 2004. A study on sks wave splitting beneath the China mainland and adjacent regions. Chinese Journal of Geophysics (in Chinese), 47(5): 812-821. http://dx.doi.org/10.1002/cjg2.569

     

    Meng Q R. 2017. Origin of the Qinling mountains. Scientia Sinica Terrae (in Chinese), 47(4): 412-420. doi: 10.1360/N072016-00422

     

    Montagner J P, Tanimoto T. 1990. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research: Solid Earth, 95(B4): 4797-4819. doi: 10.1029/JB095iB04p04797

     

    Morris G B, Raitt R W, Shor G G Jr. 1969. Velocity anisotropy and delay-time maps of the mantle near Hawaii. Journal of Geophysical Research, 74(17): 4300-4316. doi: 10.1029/JB074i017p04300

     

    Nicolas A, Christensen N I, Nicolas A, et al. 1987. Formation of anisotropy in upper mantle peridotites-a review. //Fuchs K, Froidevaux C eds. Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. Washington, D.C. : American Geophysical Union, 111-123.

     

    Ren J, Peng J B, Wang F Y, et al. 2012. The research of deep structural features of Weihe basin and adjacent areas. Chinese Journal of Geophysics (in Chinese), 55(9): 2939-2949. http://www.researchgate.net/publication/278122523_The_research_of_deep_structural_features_of_Weihe_basin_and_adjacent_areas

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting. Reviews of Geophysics, 37 (1): 65-106, doi:10.1029/98RG02075.

     

    Shao H C, Su G. 1999. Analysis on the seismicity trend around the ordos block. Northwestern Seismological Journal (in Chinese), 21(4): 395-398. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ199904008.htm

     

    Shearer P M, Orcutt J A. 1986. Compressional and shear wave anisotropy in the oceanic lithosphere-the Ngendei seismic refraction experiment. Geophysical Journal of the Royal Astronomical Society, 87(3): 967-1003. doi: 10.1111/j.1365-246X.1986.tb01979.x

     

    Shi Y T, Gao Y, Shen X Z, et al. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault. Tectonophysics, 774: 228274. doi: 10.1016/j.tecto.2019.228274

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10): 16429-16454. doi: 10.1029/91JB00899

     

    Silver P G, Martha K. Savage. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3): 949-963, https://doi.org/10.1111/j.1365-246X.1994.tb04027.x. doi: 10.1111/j.1365-246X.1994.tb04027.x

     

    Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24: 385-432. doi: 10.1146/annurev.earth.24.1.385

     

    Savage, J. C. 1990. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models. Journal of Geophysical Research: Solid Earth, 95(B4): 4873. doi: 10.1029/JB095iB04p04873

     

    Sun L S, Huang B C. 2009. New paleomagnetic result for Ordovician rocks from the Tarim Block, Northwest China and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 52(7): 168-180, doi:10.3969/j.issn.0001-5733.2009.07.018.

     

    Tang W, Chen Z L, Liu Y P, et al. 2005. Present-day tectonics activity in the intersection area of the Xianshuihe fault and Longmenshan fault on the eastern margin of the Qinghai-Tibet Plateau. Geological Bulletin of China (in Chinese), 24(12): 1169-1172. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200512014.htm

     

    Tanimoto T, Anderson D L. 1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle-Love and Rayleigh waves 100~250 s. Journal of Geophysical Research: Solid Earth, 90(B2): 1842-1858. doi: 10.1029/JB090iB02p01842

     

    Teng J W, Xiong S B, Zhang Z J. 1997. Review and prospects for geophysical study of the deep lithosphere structure and tectonics in Qinghai-Xizang (Tibet). Plateau Acta Geophysica Sinica (in Chinese), 40(S1): 121-139. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1997S1011.htm

     

    Teng J W, Ruan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrologica Sinica (in Chinese), 28(12): 4077-4100.

     

    Teng J W, Li S L, Zhang Y Q, et al. 2014a. Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton. Chinese Journal of Geophysics (in Chinese), 57(10): 3154-3175, doi:10.6038/cjg20141006.

     

    Teng J W, Li S L, Zhang Y Q, et al. 2014b. Seismic wave fields and dynamical response for Qinling orogen and sedimentary basins and crystalline basement. Chinese Journal of Geophysics (in Chinese), 57(3): 770-788, doi:10.6038/cjg20140308.

     

    Vinnik L P, Farra V, Romanowicz B. 1989. Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations. Bulletin of the Seismological Society of America, 79 (5): 1542-1558. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=79/5/1542

     

    Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Blackwell Publishing Ltd, 111(3): 433-447. http://gji.oxfordjournals.org/content/111/3/433.refs

     

    Wang C Y, Ding Z F, Song J L, et al. 1997. Shear wave velocity structure in Dabieshan orogenic belt. Acta Geophysica Sinica (in Chinese), 40(3): 337-346. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199703005.htm

     

    Wang C Y, et al. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern. Science in China Series D: Earth Sciences, 50(8): 1150-1160. doi: 10.1007/s11430-007-0053-5

     

    Wang C Y, Chang L J, Ding Z F, et al. 2014. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland. Science China Earth Sciences, 57(1): 132-143. doi: 10.1007/s11430-013-4675-5

     

    Wang Q, Gao Y, Shi Y T, et al. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS. Chinese Journal of Geophysics (in Chinese), 56(3): 892-905, doi:10.6038/cjg20130318.

     

    Wang Q S, Teng J W, Zhang Y Q, et al. 2013. Discussion on the special gravity field across the north part of Middle Qinling Mt. Chinese Journal of Geophysics (in Chinese), 56(3): 792-798, doi:10.6038/cjg20130308.

     

    Wang Y, Xu H Z. 2003. A study on convergence rate of the India plate to Eruasia subduction beneath Qinghai-Xizang plateau-inversion results from GPS observational data. Chinese Journal of Geophysics (in Chinese), 46(2): 185-190. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.340/full

     

    Yu Y, Chen Y S, Jian H C, et al. 2016. SKS wave splitting study of the transition zone at the central portion of the North China Craton. Chinese Journal of Geophysics (in Chinese), 59(1): 141-151, doi:10.6038/cjg20160111.

     

    Yuan X C, Xu M C, Tang W B, et al. 1994. Eastern qinling seismic reflection profiling. Acta Geophysica Sinica (in Chinese), 37(6): 749-758. http://ci.nii.ac.jp/naid/10026533742

     

    Yuan X C. 1997. The crustal structure of the qinling orogen and wedging mountain building. Acta Geologica Sinica (in Chinese), 71(3): 227-235. http://www.researchgate.net/publication/296447162_The_crustal_structure_of_the_Qinling_orogen_and_wedging_mountain_building

     

    Yuan X C, Li S F, Hua J R. 2008. Lithospheric structure of the Qinling intracontinental orogen. Geology in China (in Chinese), 35(1): 1-17. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200801003.htm

     

    Zeng R S, Ding Z F, Wu Q J. 1998. The crustal structures from himalaya to qilian and its implications for continent continent collision process. Acta Geophysica Sinica (in Chinese), 40(1): 49-60. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199801006.htm

     

    Zhang G W. 1991. A discussion on basic features of tectonic development of lithosphere of the Qinling Belt. Journal of Northwest University (Natural Science Edition) (in Chinese), 21(2): 77-87. http://www.cqvip.com/QK/95035X/19912/630755.html

     

    Zhang G W, Guo A L, Liu F T, et al. 1996. Three-dimentional architecture and dynamic analysis of the Qinling orogenic belt. Science in China (Series D), 39(S1): 1-9. http://qikan.cqvip.com/Qikan/Article/Detail?id=4001138943

     

    Zhang H S, Teng J W, Tian X B, et al. 2013. Lithospheric thickness and upper mantle anisotropy beneath the northeastern Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 56(2): 459-471, doi:10.6038/cjg20130210.

     

    Zhang J H, Li Y X, Guo L Q, et al. 2004. Study on present-day deformation and strain field in north china by use of gps data. Journal of Geodesy and Geodynamics (in Chinese), 24(3): 40-46. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB200403008.htm

     

    Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1

     

    Zhang S Q, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534): 774-777. doi: 10.1038/375774a0

     

    Zheng C, Ding Z F, Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in Southeast Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 59(9): 3223-3236, doi:10.6038/cjg20160908.

     

    Zhang G W, Zhang B R, Yuan X C, et al. 2001. Qinling Orogenic belt and continental dynamics. Beijing: Science Press (in Chinese).

     

    Zhu R X, Yang Z Y, Ma X H et al. 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic. Science in China Series D: Earth Sciences, 41(2): 1-19. http://www.cqvip.com/QK/60111X/1998S2/3000956652.html

     

    常利军, 丁志峰, 王椿镛. 2016. 南北构造带北段上地幔各向异性特征. 地球物理学报, 59(11): 4035-4035. doi: 10.6038/cjg20161109 http://www.geophy.cn//CN/abstract/abstract13188.shtml

     

    丁文秀, 付媛媛, 高原等. 2017. 秦岭-大别及邻区背景噪声的瑞利波层析成像. 地球物理学报, 60(8): 2959-2968, doi:10.6038/cjg20170805. http://www.geophy.cn//CN/abstract/abstract13909.shtml

     

    丁志峰, 曾融生. 1996. 青藏高原横波分裂的观测研究. 地球物理学报, 39(2): 211-220. doi: 10.3321/j.issn:0001-5733.1996.02.008 http://www.geophy.cn//CN/abstract/abstract4095.shtml

     

    范俊喜, 马瑾, 甘卫军. 2003. 鄂尔多斯地块运动的整体性与不同方向边界活动的交替性. 中国科学(D辑), 33(S1): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1012.htm

     

    高原, 滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究. 地球物理学进展, 20(1): 180-185. doi: 10.3969/j.issn.1004-2903.2005.01.032

     

    高原, 石玉涛, 陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响. 科学通报, 63(19): 1934-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201819010.htm

     

    贺伟光, 陈永顺, 叶庆东等. 2015. 秦岭及周边地区背景噪声love波层析成像. 地球物理学进展, 30(1): 47-56, doi:10.6038/pg20150108.

     

    黄耘, 李清河, 张元生等. 2011. 郯庐断裂带鲁苏皖段及邻区地壳速度结构. 地球物理学报, 54(10): 2549-2559, doi:10.3969/j.issn.0001-5733.2011.10.012. http://www.geophy.cn//CN/abstract/abstract8195.shtml

     

    黄忠贤. 2011. 华北地区地壳上地幔速度各向异性研究. 地球物理学报, 54(3): 681-691, doi:10.3969/j.issn.0001-5733.2011.03.007. http://www.geophy.cn//CN/abstract/abstract7838.shtml

     

    嵇少丞, 王茜, 孙圣思等. 2008. 亚洲大陆逃逸构造与现今中国地震活动. 地质学报, 82(12): 1644-1667. doi: 10.3321/j.issn:0001-5717.2008.12.003

     

    李爽, 冯梅, 安美建等. 2014. 秦岭及周边地区瑞雷波方位各向异性. 地震学报, 36(4): 531-545. doi: 10.3969/j.issn.0253-3782.2014.04.001

     

    黎彤, 倪守斌. 1997. 中国大陆岩石圈的化学元素丰度. 地质与勘探, 33(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199701011.htm

     

    李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 49(5): 1359-1368. doi: 10.3321/j.issn:0001-5733.2006.05.015 http://www.geophy.cn//CN/abstract/abstract610.shtml

     

    李英康, 高锐, 高建伟等. 2015. 秦岭造山带的东西向地壳速度结构特征. 地球物理学进展, 30(3): 1056-1069, doi:10.6038/pg20150309.

     

    刘庚, 高原, 石玉涛. 2017. 秦岭造山带及其两侧区域地壳剪切波分裂. 地球物理学报, 60(6): 2326-2337, doi:10.6038/cjg20170624. http://www.geophy.cn//CN/abstract/abstract13776.shtml

     

    刘建华, 刘福田, 孙若昧等. 1995. 秦岭-大别造山带及其南北缘地震层析成像. 地球物理学报, 38(1): 46-54. doi: 10.3321/j.issn:0001-5733.1995.01.006 http://www.geophy.cn//CN/abstract/abstract4176.shtml

     

    罗艳, 黄忠贤, 彭艳菊等. 2004. 中国大陆及邻区SKS波分裂研究. 地球物理学报, 47(5): 812-821. doi: 10.3321/j.issn:0001-5733.2004.05.012 http://www.geophy.cn//CN/abstract/abstract589.shtml

     

    孟庆任. 2017. 秦岭的由来. 中国科学: 地球科学, 47(4): 412-420. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704005.htm

     

    任隽, 彭建兵, 王夫运等. 渭河盆地及邻区地壳深部结构特征研究. 地球物理学报, 2012, 55(9): 2939-2947. http://www.geophy.cn//CN/abstract/abstract8932.shtml

     

    滕吉文, 李松岭, 张永谦等. 2014a. 秦岭造山带与邻域华北克拉通和扬子克拉通的壳、幔精细速度结构与深层过程. 地球物理学报, 57(10): 3154-3175, doi:10.6038/cjg20141006. http://www.geophy.cn//CN/abstract/abstract10870.shtml

     

    滕吉文, 李松岭, 张永谦等. 2014b. 秦岭造山带与沉积盆地和结晶基底地震波场及动力学响应. 地球物理学报, 57(3): 770-788, doi:10.6038/cjg20140308. http://www.geophy.cn//CN/abstract/abstract10215.shtml

     

    王椿镛, 丁志峰, 宋建立等. 1997. 大别造山带地壳S波速度结构. 地球物理学报, 40(3): 337-346. doi: 10.3321/j.issn:0001-5733.1997.03.006 http://www.geophy.cn//CN/abstract/abstract3992.shtml

     

    王椿镛, 常利军, 吕智勇, 等. 2007. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式. 中国科学: 地球科学, 37(4): 495-503. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704007.htm

     

    王椿镛, 常利军, 丁志峰, 等. 2014. 中国大陆上地幔各向异性和壳幔变形模式. 中国科学: 地球科学, 44(1): 98-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401011.htm

     

    王琼, 高原, 石玉涛等. 2013. 青藏高原东北缘上地幔地震各向异性: 来自SKS、PKS和SKKS震相分裂的证据. 地球物理学报, 56(3): 892-905, doi:10.6038/cjg20130318. http://www.geophy.cn//CN/abstract/abstract9336.shtml

     

    王琼, 高原, 钮凤林等. 2016. 利用接收函数计算地壳各向异性的可靠性分析及倾斜界面的影响. 地震, 36(2): 14-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201602002.htm

     

    王谦身, 滕吉文, 张永谦等. 2013. 中秦岭北侧特异重力场及其探榷. 地球物理学报, 56(3): 792-798, doi:10.6038/cjg20130308. http://www.geophy.cn//CN/abstract/abstract9326.shtml

     

    王勇, 许厚泽. 2003. 青藏高原印度板块向欧亚大陆俯冲速率的研究-GPS观测资料的反演结果. 地球物理学报, 46(2): 185-190. http://www.geophy.cn//CN/abstract/abstract1474.shtml

     

    于勇, 陈永顺, 菅汉超等. 2016. 华北克拉通中部过渡带SKS波分裂研究: 鄂尔多斯东南角的局部软流圈绕流. 地球物理学报, 59(1): 141-151, doi:10.6038/cjg20160111. http://www.geophy.cn//CN/abstract/abstract12095.shtml

     

    袁学诚, 徐明才, 唐文榜等. 1994. 东秦岭陆壳反射地震剖面. 地球物理学报, 37(6): 749-758. doi: 10.3321/j.issn:0001-5733.1994.06.006 http://www.geophy.cn//CN/abstract/abstract4282.shtml

     

    袁学诚. 1997. 秦岭造山带地壳构造与楔入成山. 地质学报, 71(3): 227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199703003.htm

     

    袁学诚, 李善芳, 华九如. 2008. 秦岭陆内造山带岩石圈结构. 中国地质, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200801003.htm

     

    曾融生, 丁志峰, 吴庆举. 1998. 喜马拉雅--祁连山地壳构造与大陆-大陆碰撞过程. 地球物理学报, 40(1): 49-60. http://www.geophy.cn//CN/abstract/abstract3884.shtml

     

    张国伟, 张本仁, 袁学诚等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.

     

    张洪双, 滕吉文, 田小波等. 2013. 青藏高原东北缘岩石圈厚度与上地幔各向异性. 地球物理学报, 56(2): 459-471, doi:10.6038/cjg20130210. http://www.geophy.cn//CN/abstract/abstract9292.shtml

     

    张静华, 李延兴, 郭良迁等. 2004. 用GPS测量结果研究华北现今构造形变场. 大地测量与地球动力学, 24(3): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200403008.htm

     

    郑晨, 丁志峰, 宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构. 地球物理学报, 59(9): 3223-3236, doi:10.6038/cjg20160908. http://www.geophy.cn//CN/abstract/abstract13050.shtml

     

    朱日祥, 杨振宇, 马醒华等. 1998. 中国主要地块显生宙古地磁视极移曲线与地块运动. 中国科学(D辑), 28(S1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm

  • 加载中

(7)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-10-12
修回日期:  2021-01-13
上线日期:  2021-05-10

目录