
北京城市通风廊道研究I: 环境效应模拟
Ventilation Corridor in Beijing, Part I: Simulation of Environmental Effects
采用耦合城市冠层模式UCM的中尺度气象模式WRF,利用北京市高分辨率地表类型、城市建筑及通风廊道规划方案等资料,针对2019年冬季和夏季各开展了为期 1个月的百米尺度高分辨率敏感性模拟试验,并应用自动气象站网观测数据进行了验证。模拟试验结果表明:引入通风廊道后气象要素差异不仅限于廊道区,而是在整个研究区域都有体现。模拟的地面风速明显增大,热岛强度减弱,风的平流效应导致热岛范围发生偏移。引入廊道后北京城区月平均气温下降了0.14~0.17℃,平均风速及相对湿度分别增加了0.32~0.36 m/s和2.02%~3.37%。表明通风廊道对于改善城市密集区的风热环境,提高气候舒适性是有效的,背景风速越大,通风廊道的缓解效应越明显。气象要素差异的日变化分布显示,通风廊道对白天气象要素的影响要大于夜间。进一步分析显示,通风廊道对局地气象要素的影响主要来自于风速增大的平流效应及下垫面湍流通量改善两方面的贡献。
The construction of ventilation corridors is considered to be an effective measure which can promote urban air quality, alleviate heat island effect and improve urban living environment. Urban ventilation corridor is a kind of energy-saving and ecological method which makes the most efficient use of the natural weather conditions to improve the urban environment. It can make the clean air from the outskirts of the city into the interior of the city through the ventilation path because of the characteristics of air flowing. Meanwhile, it can make the exhaust-gas and waste-heat to be dilutedly discharged with the wind. Thus, the purpose of purifying urban air and improving urban environment can be achieved. Basing on the data such as surface type with high-resolution, the urban building and the urban ventilated corridor planning in Beijing, the coupled of urban canopy model with the mesoscale meteorological model WRF (Weather Research and Forecasting) is used in this paper. In addition, the sensitivity simulation tests with high-resolution of 200 m was conducted in January and July of 2019 respectively. And the WRF model is verified by applying of the observational data from automatic meteorological station network. Some results can be obtained through the simulation tests. After the urban ventilation corridors have been constructed, the difference of meteorological elements will be not limited to the corridor area, but the whole area studied. The surface wind speed will increase significantly, the intensity of urban heat island will weaken, and the range of the urban heat island will shift caused by the advection effect of wind. After the corridor has been finished, the average monthly temperature in Beijing will decrease by 0.14-0.17℃, the average wind speed and the relative humidity will increase by 0.32-0.36 m/s and 2.02%-3.37% respectively. Through the analysis of the numerical simulation test results, the following conclusions can be drawn. The ventilation corridor is effective in improving the thermal environment and increasing the climate comfort in the city-intensive areas. And the greater the wind velocity is, the more obvious the mitigation effect of the ventilation corridor is. The diurnal variation distribution of the meteorological field shows that the influence of ventilation corridors on meteorological field is greater in the daytime than in the night. Further analysis indicates that the influence of ventilation corridors on local meteorological elements is mainly due to the advection effect caused by the increase of wind speed and the improvement of the quantity of the turbulence flux on underlying surface.
通风廊道 / 环境效应 / 数值模拟 / 北京 {{custom_keyword}} /
ventilation corridors / environmental effect / numerical simulation / Beijing {{custom_keyword}} /
[1] |
朱纪广, 许家伟, 李小建, 等. 中国土地城镇化和人口城镇化对经济增长影响效应分析[J]. 地理科学, 2020, 40(10): 1654-1662.
Zhu Jiguang, Xu Jiawei, Li Xiaojian et al. Impact of land urbanization and population urbanization on economic growth in China. Scientia Geographica Sinica, 2020, 40(10): 1654-1662.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
张向敏, 罗燊, 李星明, 等. 中国空气质量时空变化特征[J]. 地理科学, 2020, 40(2): 190-199.
Zhang Xiangmin, Luo Shen, Li Xingming et al. Spatio-temporal variation features of air quality in China. Scientia Geographica Sinica, 2020, 40(2): 190-199.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李威. 城市通风廊道研究及其规划应用[J]. 低碳世界, 2017(12): 257-258.
Li Wei. Study on urban ventilation corridor and its planning application. Low Carbon World, 2017(12): 257-258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Kress R. Regionale luftaustauschprozesse und ihre bedeutung fur die räumliche planung (in German)[J]. Dortmund: Institut for Umwehschutz der Universitat Dortmund, 1979: 15-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
Ng E. Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of HongKong[J]. Building and Environment, 2009, 44(7): 1478-1488.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Niachou K, Livada I, Santamouris M. Experimental study of temperature and air flows distribution inside an urban street canyon during hot summer weather condition, Part I: Air and surface temperatures[J]. Building and Environment, 2008, 43: 1383-1392.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Mahmoud B, Shinsuke K, Takeo T et al. An experimental investigation of the wind environment and air quality within a densely populated urban street canyon[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99: 857-867.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
Edward N, Chao Yuan, Liang Chen et al. Fung, Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong[J]. Landscape and Urban Planning, 2011, 101: 59-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
齐康. 宜居环境整体建筑学构架研究[D]. 南京: 东南大学出版社, 2013.
Qi Kang. Study on the architecture framework of livable environment. Nanjing: Southeast University Press, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李军, 荣颖, 武汉市城市风道构建及其设计控制引导[J]. 规划师, 2014, 30(8): 115-120
Li Jun, Rong Ying. Urban design control for wind corridor: Wuhan case. Planners, 2014, 30 (8): 115-120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
王晶. 基于风环境的深圳市滨河街区建筑布局策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
Wang Jing. Research on building layout strategy of riverside block in Shenzhen based on wind environment. Harbin: Harbin Institute of Technology, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
翁清鹏, 张慧, 包洪新, 等. 南京市通风廊道研究[J]. 科学技术与工程, 2015, 15(11): 89-94.
Weng Qingpeng, Zhang Hui, Bao Hongxin et al. Study on ventilation channels of Nanjing City. Science Technology and Engineering, 2015, 15(11): 89-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
孔祥鑫. 北京将造五条城市通风廊道[N]. 中华工商时报, 2016-02-26(004).
Kong Xiangxin. Five urban ventilation corridors to be built in Beijing. China Business Times, 2016-02-26(004).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
孙武, 王义明, 王越雷, 等. 珠江三角洲地面风场的特征及其城市群风道的构建[J]. 生态学报, 2012, 32(18): 5630-5636.
Sun Wu, Wang Yiming, Wang Yuelei et al. Wind fields and the development of wind corridors in the urban metropolis of the Pearl River Delta. Acta Ecologica Sinica, 2012, 32(18): 5630-5636.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
杜吴鹏, 房小怡, 刘勇洪, 等. 基于气象和GIS技术的北京中心城区通风廊道构建初探[J]. 城市规划学刊, 2016, 5(231): 79-85.
Du Wupeng, Fang Xiaoyi, Liu Yonghong et al. Construction of ventilation corridors in the Beijing central urban area based on meteorology and GIS technology. Urban Planning Forum, 2016, 5(231): 79-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
李家燕. 基于CFD技术的城市通风廊道规划方法研究[D]. 合肥: 安徽建筑大学, 2017.
Li Jiayan. Research on planning method of urban ventilation corridors based on CFD technology. Hefei: Anhui Jianzhu University, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
曾忠忠, 袁靖智. 北京市通风廊道的模拟研究[J]. 华中建筑, 2017, 11: 36-41.
Zeng Zhongzhong, Yuan Jingzhi. Simulation research on Beijing ventilation corridor. Huazhong Architecture, 2017, 11: 36-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
任庆昌, 魏冀明, 戴维. 区域风环境研究与通风廊道建设实施建议——以珠三角为[J]. 热带地理, 2016, 36(5): 887-894.
Ren Qingchang, Wei Jiming, Dai Wei. Characteristics of regional wind environment and construction of ventilation corridors: A case study of the Pearl River Delta. Tropical Geography, 2016, 36(5): 887-894.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
党冰, 房小怡, 吕红亮, 等. 基于气象研究的城市通风廊道构建初探——以南京江北新区为例[J]. 气象, 2017, 43(9): 1130-1137.
Dang Bing, Fang Xiaoyi, Lü Hongliang et al. Preliminary study on building urban ventilation corridors based on meteorological research-Taking Nanjing Jiangbei new region as the example. Meteorological Monthly, 2017, 43(9): 1130-1137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
刘红年, 贺晓冬, 苗世光, 等. 基于高分辨率数值模拟的杭州市通风廊道气象效应研究[J]. 气候与环境研究, 2019, 24(1): 22-36.
Liu Hongnian, He Xiaodong, Miao Shiguang et al. A study on meteorological effect of the Hangzhou ventilation corridors based on high resolution numerical simulation. Climatic and Environmental Research, 2019, 24(1): 22-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Zheng Zuofang, Ren Guoyu, Wang Hong et al. Relationship between fine-particle pollution and the urban heat islands in Beijing, China: Observational evidence[J]. Boundary-Layer Meteorology. 2018, 169: 93-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
Chen F, Kusaka H, Bornstein R et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems[J]. Int J Climatol, 2011, 31(2): 273-288.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
He Xiaodong, Li Yuhuan, Wang Xinran et al. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system[J]. Journal of Cleaner Production, 2019, 208: 373-383.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
郑祚芳, 任国玉, 王耀庭, 等. 大型人工湖气候效应观测研究——以密云水库为例[J]. 地理科学, 2017, 37(12): 1933-1941.
Zheng Zuofang, Ren Guoyu, Wang Yaoting et al. Observational study on climate effect of large artificial lake: Taking Miyun reservoir as an example. Scientia Geographica Sinica, 2017, 37(12): 1933-1941.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
李茂华, 都金康, 李皖彤, 等. 1982—2015年全球植被变化及其与温度和降水的关系[J]. 地理科学, 2020, 40(5): 823-832.
Li Maohua, Du Jinkang, Li Wantong et al. Global vegetation change and its relationship with precipitation and temperature based on GLASS-LAI in 1982-2015. Scientia Geographica Sinica, 2020, 40(5): 823-832.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
Yang Ping, Ren Guoyu, Liu Weidong. Spatial and temporal characteristics of Beijing urban heat island intensity[J]. Journal of Applied Meteorology and Climatology, 2013, 52: 1803-1816.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
王在文, 陈敏, Monache L, 等. 相似集合预报方法在北京区域地面气温和风速预报中的应用[J]. 气象学报, 2019, 77(5): 869-884.
Wang Zaiwen, Chen Min, Monache L et al. Application of analog ensemble method to surface temperature and wind speed prediction in Beijing area. Acta Meteorologica Sinica, 2019, 77(5): 869-884.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
蒲维维, 赵秀娟, 张小玲. 北京地区夏末秋初气象要素对PM2.5污染的影响 应用气象学报 2011, 22(6): 716-723.
Pu Weiwei, Zhao Xiujuan, Zhang Xiaoling. Effect of meteorological factors on PM2.5 in late summer and early autumn of Beijing Journal of Applied Meteorological Science 2011, 22(6): 716-723.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
陆大道. 关于“十四五”规划: 领域与认识[J]. 地理科学, 2020, 40(1): 1-5.
Lu Dadao. On the 14th five year plan: Field and understanding. Scientia Geographica Sinica, 2020, 40(1): 1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
姜鹏, 徐颖, 周利亚. 利用城市通风廊道治理灰霾成功经验用在北京效果存疑[J]. 中国战略新兴产业, 2016, 4: 61-65.
Jiang Peng, Xu Ying, Zhou Liya. The successful experience of urban ventilation corridor in the control of haze is questionable. China’s Strategic Emerging Industries, 2016, 4: 61-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |