Consolidation characteristics of the turfy soil in seasonally frozen area
-
摘要:
季冻区草炭土的工程性质很差,具有高压缩性的同时蠕变特性明显,路基工后沉降量大。目前针对季冻区草炭土固结压缩蠕变特性的研究仍相对匮乏,亟需对其固结压缩及蠕变特性进行深入研究,为季冻区草炭土路基的沉降预测提供参数依据。选取吉林省敦化市江源镇典型季冻区草炭土为研究对象,通过一维固结压缩试验和一维固结蠕变试验,获得草炭土压缩系数、固结系数和次固结系数分布范围及纤维含量对草炭土主、次固结特性的影响规律。试验表明:分级加载下,草炭土纤维含量越大,压缩性越强,两者呈正相关性;固结系数(Cv)范围为1.00×10−3~8.39×10−3 cm2/s,固结系数随固结压力增大而减小,当固结压力超过200 kPa之后基本稳定。次固结系数(Cα)范围为0.022~0.095,次固结系数随固结压力增大而增大,到达峰值后逐渐减小,峰值时所对应的固结压力介于50~100 kPa之间;当固结压力一定时,纤维含量越大固结蠕变越明显,次固结系数越大。吉林敦化草炭土的次固结系数和压缩指数具有一定的相关性,纤维质量占比为21%、34%、48%、59%、73%的草炭土对应的次固结系数与压缩指数比值(Cα/Cc)分别为0.0452,0.0331,0.0303,0.0246,0.0245。
Abstract:The turfy soil in seasonally frozen regions has very poor engineering properties, with high compressibility and obvious creep characteristics. The settlement of roadbed after construction is large. Therefore, it is urgent to conduct in-depth researches due to the lack of consolidation compression and creep characteristics researches of turfy soil in seasonally frozen regions, so as to provide parameters for the settlement prediction of the turfy soil roadbed in seasonally frozen regions. The typical turfy soil in seasonally frozen region near the Jiangyuan town of the city of Dunhua in Jilin Province is selected as the research object. Through 1D consolidation compression test and 1D consolidation creep test, the distribution range of the compression coefficient, consolidation coefficient and secondary consolidation coefficient of the turfy soil and the influence of fiber content on the primary and secondary consolidation characteristics of the turfy soil are obtained. The experimental results show that under graded loading, the greater the fiber content is, the stronger the compressibility of turfy soil is, showing a positive correlation. Consolidation coefficient (Cv) ranges from 1.00×10−3 to 8.39×10−3 cm2/s. Cv decreases with the increase of consolidation pressure. When the consolidation pressure exceeds 200 kPa, Cv is basically in a stable range. The secondary consolidation coefficient (Cα) ranges from 0.022 to 0.095. Cα increases with the increasing consolidation pressure, then decreases gradually after reaching the peak value when the corresponding consolidation pressure varies between 50 kPa and 100 kPa. When the consolidation pressure is constant, the higher the fiber content is, the more obvious the consolidation creep is, and the higher Cα is. There is a certain correlation between the secondary consolidation coefficient and compression index of the Dunhua turfy soil in Jilin Province. The Cα/Cc numerical values corresponding to the turfy soil with the fiber content of 21%, 34%, 48%, 59% and 73% are 0.0452, 0.0331, 0.0303, 0.0246 and 0.0245, respectively.
-
Key words:
- turfy soil /
- consolidation compression /
- consolidation creep /
- fiber content /
- Cα/Cc
-
草炭土是一种含有大量植物残体、腐殖质及一部分矿物质的特殊土,在我国主要分布于大小兴安岭、长白山脉、青藏高原以及新疆大部分山区[1]。草炭土的工程性质很差,压缩性高且工后沉降明显,随着道路工程的发展建设,大量的工程项目不可避免地穿越草炭土地区,路基多出现沉陷、基底被挤压引起侧向隆起、滑动坍塌等破坏现象[2]。因此亟需开展草炭土固结特性研究,为草炭土路基沉降预测提供理论和参数依据。
国内外对含纤维及腐殖质有机质土固结特性的研究主要有以下2个方面:(1)在固结压缩研究方面,Whitlow[3]、Razali等[4]研究得到泥炭土的高压缩性由高有机质含量和高纤维含量决定,并导致严重的沉降问题。Santaga等[5]研究表明泥炭土的固结压缩特性受分解度的影响很大,分解度越低压缩性越高,这是由于高含量植物纤维导致较高的含水率和孔隙比。Johari等[6]研究得出泥炭土中的纤维含量极大地影响着压缩变形特性,纤维含量越高,含水率、孔隙比和压缩指数越大,压缩性越高,沉降量越大。桂跃等[7]探讨了云南地区泥炭土不同影响因素对固结系数的影响及机制。吕岩等[8]研究了草炭土不同有机质含量下的压缩、强度特性。(2)在固结蠕变研究方面,MacFarlane[9]发现泥炭土次固结系数较大,次固结变形量最高可占总沉降的60%。桂跃等[10]提出云南地区泥炭土次固结系数随着固结压力的增大,呈现先快速增大、到达峰值后逐步减小的规律,次固结系数峰值所对应的固结压力在100~200 kPa之间,泥炭土次固结系数与压缩指数比值(Cα/Cc)约为0.052。王竟宇等[11]探究了不同埋深和扰动状态对大理泥炭土固结蠕变特性的影响。冯瑞玲等[12]以云南某高速公路泥炭土路段为依托,对不同有机质含量的泥炭土进行了基本性质试验和一维蠕变试验。李育红等[13]对昆明滇池地区湖相泥炭土开展了主、次固结系数研究。以上对于含纤维及腐殖质有机质土固结特性的研究已取得了较多的成果,但对季冻区草炭土固结压缩蠕变特性的研究仍相对匮乏。因此本文选取吉林省敦化市江源镇典型季冻区草炭土为研究对象,开展一维固结压缩试验和一维固结蠕变试验,分析压缩系数、固结系数和次固结系数的分布范围及纤维含量对草炭土主、次固结特性的影响规律。
1. 草炭土的基本性质
采用ASTMD 2974—14[14]中的方法测得吉林敦化草炭土样的有机质质量分数范围为36.25%~81.35%,采用ASTMD 1997—13[15]中的方法测得草炭土样的纤维质量分数范围为19.83%~73.78%,如表1所示。
表 1. 吉林敦化草炭土不同深度有机质质量分数(Wu)和纤维质量分数(Wf)Table 1. Organic matter content and fiber content of the turfy soil at different depths near Dunhua in Jilin深度/m Wu/% Wf /% 0.0~1.0 53.28~81.35 40.99~73.78 1.0~2.0 36.25~65.81 30.83~49.12 2.0~2.4 38.37~55.25 19.83~37.65 根据ASTMD 4427—13[16]标准将纤维质土分为3类,Wf≥67%为纤维土,33%≤Wf <67%为半纤维土,Wf <33%为高分解土。选取高分解度草炭土(Wf=21%)、半纤维草炭土(Wf=34%、Wf=48%、Wf=59%)以及纤维草炭土(Wf=73%)试样,进行5种纤维草炭土的固结试验。根据《土工试验方法标准》(GB/T 50123—2019)[17],测得吉林敦化草炭土试样基本物理指标如表2所示。
表 2. 吉林敦化草炭土样基本物理指标Table 2. Basic physical indexes of the turfy soil samples near Dunhua in Jilin深度/m 取样编号 密度ρ/(g·cm−3) 含水率w/% 比重Gs 初始孔隙比e0 有机质质量分数Wu /% 纤维质量占比Wf /% 0.0~0.5 K1-1 0.99 416.83 1.31 8.88 79.43 73 0.5~1.0 K2-1 1.05 392.92 1.62 7.11 67.12 59 1.0~1.5 K3-1 1.09 306.08 1.68 5.33 65.81 48 1.5~2.0 K4-1 1.14 242.18 2.09 4.50 50.88 34 2.0~2.4 K5-1 1.17 198.27 1.96 2.91 39.10 21 吉林敦化草炭土含水率与初始孔隙比随纤维含量的增大而增大。当Wu=79.43%(Wf=73%)时,含水率和初始孔隙比最大,分别为416.83%、8.88。
表3为云南滇池[18]和云南大理[19]2种土样的基本物理指标,可以看出,云南滇池土样[18]中有机质质量分数范围在15.7%~69.3%之间,有机质含量越大,含水率和初始孔隙比越大。Wu=69.3%时,含水率和初始孔隙比最大,分别为406.3%和6.4。而云南大理土[19]有机质含量与含水率没有明显规律。
Table 3. Basic physical indexes of Yunnan Dianchi Lake soil samples and Yunnan Dali soil samples土样
名称深度/
m取样
编号含水率
w/%比重
Gs初始
孔隙比e0有机质
质量分数Wu/%滇池
泥炭土2.5~3.0 CT1-1 64.6 2.4 1.4 15.7 7.5~8.0 CT2-1 203.4 2.1 4.4 48.1 1.0~2.0 CT3-1 406.3 1.5 6.4 69.3 大理
泥炭土1 S1 171.7 41.8 1 S6 162.1 32.1 1 S7 118.0 34.8 敦化草炭土与云南滇池泥炭土的有机质含量范围比较接近,敦化草炭土更疏松多孔。云南大理泥炭土有机质质量分数范围在32.1%~41.8%之间,含水率范围在118.0%~171.7%之间,含水率较前2种土偏小。
2. 草炭土一维固结试验方法
对吉林敦化5种纤维含量草炭土样分别进行一维固结压缩试验和固结蠕变试验,采用分级加载方式,具体试验方案见表4。
表 4. 试验方案Table 4. Test schemes试验名称 试验目的 Wf/% 加荷序列/
kPa加荷比 历时/d 固结
压缩
试验先期固结
压力分析21 2.4-3.9-6.3-
12.5-25-50-
100-200-400
(12.5 kPa
开始每级1 d)— 7 34 48 59 73 固结
压缩
试验(1)压缩特性分析
(2)主固结特性分析21 12.5-25-50-
100-200-400
(每级1 d)1 6 34 48 59 73 固结
蠕变
试验固结蠕变
特性分析21 12.5-25-50-
100-200-400
(每级7 d)1 42 34 48 59 73 试验采用南京土壤仪器厂有限公司生产的WG型三联单杠杆固结仪,固结压缩试验稳定标准为每级压力下固结24 h或1 h变形量不大于0.01 mm,固结蠕变稳定标准为24 h变形量不大于0.01 mm[17]。考虑到草炭土的实际工程多以路基等工程为主,因此最大荷载采用400 kPa。
3. 试验结果及分析
3.1 先期固结压力
由于草炭土埋深较浅,先期固结压力较小。为确定草炭土先期固结压力,固结压缩试验在常规初始固结压力12.5 kPa之前分级施加2.4,3.9,6.3 kPa的固结压力,稳定标准为试样1 h变形量不大于0.01 mm。吉林敦化5种纤维含量草炭土试样的e-p和e-lgp曲线如图1所示。孔隙比e随固结压力的增加递减幅度变小。由于e-lgp曲线屈服阶段的直线趋势不易判断,最大曲率点不易确定,采用传统的Cassgrande方法来确定草炭土的先期固结压力存在一定困难。针对这一问题,Onitsuka等[20]、Hong等[21]、桂跃等[10]等采用了ln(1+e)-lgp双对数法较好地获得了土的先期固结压力。因而采用该法获得5种纤维含量草炭土ln(1+e)-lgp双对数曲线及先期固结压力pc,如图2所示。
纤维质量分数为21%、34%、48%、59%、73%草炭土样的先期固结压力分别为32.2,21.3,15.1,4.2,3.8 kPa,实际上覆土压力为28.13,21.86,13.13,3.13,1.88 kPa,与先期固结压力基本一致,为正常固结土。通过查阅相关的地质勘查报告,该地区并未发生过剥蚀搬运等地质变化,上层未施加过荷载,属正常固结土。
3.2 草炭土的压缩特性
压缩系数a1−2<0.1 MPa−1时为低压缩性土,0.1 MPa−1≤a1−2<0.5 MPa−1时为中压缩性土,a1−2≥0.5 MPa−1时为高压缩性土[17]。图3为吉林敦化草炭土样和云南滇池泥炭土样的压缩系数(av)和固结压力的关系曲线。吉林敦化草炭土样的压缩系数范围为1.49~51.74 MPa−1,云南滇池泥炭土样[18]压缩系数范围为0.71~52.71 MPa−1,2种土均属于高压缩性土。
随着纤维含量的增加,草炭土中絮状、多孔结构增多。固结压力一定时,纤维含量越大,压缩系数越大,压缩性越强。
3.3 草炭土的主固结特性
采用时间对数法计算草炭土的固结系数Cv。吉林敦化不同纤维含量草炭土和云南滇池泥炭土样[18]的Cv-p曲线如图4所示。
沈珠江[22] 经过研究总结出连云港淤泥质土固结系数范围为5×10−5~4×10−3 cm2/s,加瑞等[23]得到日本有明海沿岸黏土的固结系数基本处于10−6~10−4 cm2/s量级之间,雷华阳等[24]得到天津地区吹填软土的固结系数范围为3.8×10−5~1.4×10−3 cm2/s。图4中吉林敦化草炭土样的固结系数范围为1.00×10−3~8.39×10−3 cm2/s,云南滇池泥炭土样[18]固结系数范围为0.21×10−3~3.23×10−3 cm2/s。吉林敦化草炭土固结系数比淤泥、黏土、软土高,与云南滇池泥炭土样[18]相比,草炭土的固结系数更大。固结系数随固结压力的增加而逐渐下降。固结压力在12.5~100 kPa区间时,固结系数陡降趋势明显,云南滇池泥炭土样[18]也有类似的规律。
对5种纤维含量草炭土固结系数和固结压力进行幂函数拟合,结果如表5所示,两者相关性较高,可为实际工程提供一定指导。
表 5. 不同纤维含量草炭土的Cv-p经验关系表达式Table 5. Cv-P empirical relationship expression of the turfy soil with different fiber contentsWf/% 拟合公式 相关系数 21 Cv=15.09p0.48 R2=0.96 34 Cv =19.43p0.50 R2=0.97 48 Cv=18.05p0.47 R2=0.94 59 Cv =21.72p0.49 R2=0.96 73 Cv =19.82p0.43 R2=0.93 3.4 草炭土的蠕变特性
3.4.1 次固结系数
通过室内一维固结蠕变试验,得到5种纤维含量草炭土的e-lgt曲线(图5)。e-lgt曲线均表现出反“S”型,采用Cassgrande作图法确定其次固结系数 Cα。
图6为吉林敦化草炭土与云南大理泥炭土[19]次固结系数随固结压力的变化曲线,2种土样的Cα-p曲线均呈现先上升、到达峰值后逐渐下降的趋势。吉林敦化土样次固结系数范围为0.022 ~0.095,峰值出现在固结压力50~100 kPa之间,云南大理泥炭土样次固结系数的范围为0.008 ~0.091,峰值出现在固结压力100~200 kPa之间。固结压力一定时,吉林敦化草炭土纤维含量越高,次固结系数越大,有机质含量越高,次固结系数越大;云南大理泥炭土样[19]次固结系数与有机质含量之间未表现出明显相关规律。
次固结系数Cα出现峰值是因为土体次固结变形由土骨架刚度变化决定,一方面,分级加载过程中,土体结构逐渐破环,土骨架刚度降低;另一方面,固结压力的增加使得土体被压密,提高了土骨架的刚度。两方面因素综合作用使得Cα出现峰值点,次固结系数Cα峰值点可看作土体压密对土骨架刚度起主要作用的临界点。
3.4.2 次固结系数Cα与压缩指数Cc关系
Mesri等[25]等经过研究发现土的Cα/Cc压缩法则。Walker等[26]对Leda地区黏土进行研究,得出次固结系数Cα与压缩指数Cc近似满足Cα/Cc=0.025。Brendan等[27]对多个地区的11种软黏土进行一维固结蠕变试验总结得出富含有机质土的Cα/Cc=0.05 ~ 0.06,碳酸钙含量较高黏土的Cα/Cc=0.02。孙德安等[28]对上海饱和黏土进行试验得到 Cα/Cc=0.0336。邓岳保等[29]发现宁波软土次固结系数Cα与压缩指数Cc近似符合Cα/Cc=0.02±0.01。泥炭土的Cα/Cc值多处于0.05~0.07范围内[30]。从力学机理上来看,Cα和Cc体现应力和时间因素对土压缩变形的影响,虽分属主固结和次固结两个阶段,但有很好的相关性。因此在实际工程中可以用较易获得的Cc来预测相对难获得的Cα。吉林敦化5种纤维含量草炭土Cα-Cc曲线如图7所示。
5种纤维含量草炭土的Cα和Cc具有一定的相关性,纤维质量分数为21%、34%、48%、59%、73%的草炭土,Cα/Cc值分别是0.0452,0.0331,0.0303,0.0246,0.0245。
4. 结论
(1)敦化市江源镇草炭土的压缩系数范围为1.49~51.74 MPa−1,压缩系数随固结压力增加而减小,固结压力一定时,纤维含量越大,压缩系数越大,压缩性越强。
(2)固结系数的范围为1.00×10−3~8.39×10−3 cm2/s。随着固结压力增大,固结系数先快速减小,当固结压力超过200 kPa后,固结系数逐渐趋于稳定;同一固结压力下,纤维含量越高,固结系数越大。对5种纤维含量草炭土固结系数和固结压力进行幂函数拟合,拟合效果较好。
(3)次固结系数范围为0.022~0.095,在固结压力前期,次固结系数随固结压力的增加而增大,至峰值后逐渐减小,峰值对应的固结压力介于50~100 kPa之间。固结压力一定时,纤维含量越大,固结蠕变越明显,次固结系数越大。
(4)敦化市江源镇草炭土的Cα和Cc具有一定的相关性,纤维质量分数为21%、34%、48%、59%、73%的草炭土对应的次固结系数与压缩指数比值(Cα/Cc)分别是0.0452,0.0331,0.0303,0.0246,0.0245。
-
表 1 吉林敦化草炭土不同深度有机质质量分数(Wu)和纤维质量分数(Wf)
Table 1. Organic matter content and fiber content of the turfy soil at different depths near Dunhua in Jilin
深度/m Wu/% Wf /% 0.0~1.0 53.28~81.35 40.99~73.78 1.0~2.0 36.25~65.81 30.83~49.12 2.0~2.4 38.37~55.25 19.83~37.65 表 2 吉林敦化草炭土样基本物理指标
Table 2. Basic physical indexes of the turfy soil samples near Dunhua in Jilin
深度/m 取样编号 密度ρ/(g·cm−3) 含水率w/% 比重Gs 初始孔隙比e0 有机质质量分数Wu /% 纤维质量占比Wf /% 0.0~0.5 K1-1 0.99 416.83 1.31 8.88 79.43 73 0.5~1.0 K2-1 1.05 392.92 1.62 7.11 67.12 59 1.0~1.5 K3-1 1.09 306.08 1.68 5.33 65.81 48 1.5~2.0 K4-1 1.14 242.18 2.09 4.50 50.88 34 2.0~2.4 K5-1 1.17 198.27 1.96 2.91 39.10 21 表 3 云南滇池土样[18]和云南大理土样[19]基本物理指标
Table 3. Basic physical indexes of Yunnan Dianchi Lake soil samples and Yunnan Dali soil samples
土样
名称深度/
m取样
编号含水率
w/%比重
Gs初始
孔隙比e0有机质
质量分数Wu/%滇池
泥炭土2.5~3.0 CT1-1 64.6 2.4 1.4 15.7 7.5~8.0 CT2-1 203.4 2.1 4.4 48.1 1.0~2.0 CT3-1 406.3 1.5 6.4 69.3 大理
泥炭土1 S1 171.7 41.8 1 S6 162.1 32.1 1 S7 118.0 34.8 表 4 试验方案
Table 4. Test schemes
试验名称 试验目的 Wf/% 加荷序列/
kPa加荷比 历时/d 固结
压缩
试验先期固结
压力分析21 2.4-3.9-6.3-
12.5-25-50-
100-200-400
(12.5 kPa
开始每级1 d)— 7 34 48 59 73 固结
压缩
试验(1)压缩特性分析
(2)主固结特性分析21 12.5-25-50-
100-200-400
(每级1 d)1 6 34 48 59 73 固结
蠕变
试验固结蠕变
特性分析21 12.5-25-50-
100-200-400
(每级7 d)1 42 34 48 59 73 表 5 不同纤维含量草炭土的Cv-p经验关系表达式
Table 5. Cv-P empirical relationship expression of the turfy soil with different fiber contents
Wf/% 拟合公式 相关系数 21 Cv=15.09p0.48 R2=0.96 34 Cv =19.43p0.50 R2=0.97 48 Cv=18.05p0.47 R2=0.94 59 Cv =21.72p0.49 R2=0.96 73 Cv =19.82p0.43 R2=0.93 -
[1] 刘柱, 佴磊. 吉林地区草炭土物理力学指标相关性试验研究[J]. 水文地质工程地质,2010,37(4):53 − 57. [LIU Zhu, NIE Lei. Experimental research on the correlation of physical mechanics indexes of the turfy soil in the Jilin Area[J]. Hydrogeology & Engineering Geology,2010,37(4):53 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.04.011
LIU Zhu, NIE Lei. Experimental research on the correlation of physical mechanics indexes of the turfy soil in the Jilin Area[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 53-57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.04.011
[2] 徐燕, 佴磊, 胡忠君. 季冻区草炭土工程地质特性研究[J]. 人民长江,2011,42(10):17 − 20. [XU Yan, NAI Lei, HU Zhongjun. Study on engineering geological properties of turfy soil in seasonal frozen region[J]. Yangtze River,2011,42(10):17 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.10.005
XU Yan, NAI Lei, HU Zhongjun. Study on engineering geological properties of turfy soil in seasonal frozen region[J]. Yangtze River, 2011, 42(10): 17-20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.10.005
[3] WHITLOW R. Basic soil mechanics[M]. 3th ed. London: Longman Group Limited, 1995.
[4] RAZALI S N M, BAKAR I, ZAINORABIDIN A. Behaviour of peat soil in instrumented physical model studies[J]. Procedia Engineering,2013,53:145 − 155. doi: 10.1016/j.proeng.2013.02.020
[5] SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)
[6] JOHARI N N, BAKAR I, RAZALI S M, et al. Fiber effects on compressibility of peat[J]. IOP Conference Series:Materials Science and Engineering,2016,136:012036. doi: 10.1088/1757-899X/136/1/012036
[7] 桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土固结系数变化规律试验研究[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3259 − 3267
GUI Yue, YU Zhihua, LIU Haiming, et al. Experimental study of the change law of consolidation coefficient of the plateau lacustrine peaty soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3259 − 3267. (in Chinese with English abstract)
[8] 吕岩, 佴磊, 徐燕, 等. 有机质对草炭土物理力学性质影响的机理分析[J]. 岩土工程学报,2011,33(4):655 − 660. [LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(4):655 − 660. (in Chinese with English abstract)
LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 655-660. (in Chinese with English abstract)
[9] MACFARLANE I C. The muskeg subcommittee[C]//Proc, Tench Muskeg Research Conf, National Research Council of Canada, Ottawa: Assoc. Ctee. on Soil and Snow Mech, Tech, Memo. 1965, 85: 1 − 5.
[10] 桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报,2015,37(8):1390 − 1398. [GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1390 − 1398. (in Chinese with English abstract) doi: 10.11779/CJGE201508005
GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese with English abstract) doi: 10.11779/CJGE201508005
[11] 王竟宇, 王志良, 申林方, 等. 单向压缩状态下滇池泥炭土的蠕变特性研究[J]. 地下空间与工程学报,2020,16(6):1689 − 1695. [WANG Jingyu, WANG Zhiliang, SHEN Linfang, et al. Study on consolidation creep properties of Dianchi peaty soil under one-dimensional compression[J]. Chinese Journal of Underground Space and Engineering,2020,16(6):1689 − 1695. (in Chinese with English abstract)
WANG Jingyu, WANG Zhiliang, SHEN Linfang, et al. Study on consolidation creep properties of Dianchi peaty soil under one-dimensional compression[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1689-1695. (in Chinese with English abstract)
[12] 冯瑞玲, 吴立坚, 张益铭. 泥炭土的固结特性试验研究[J]. 地下空间与工程学报,2019,15(5):1384 − 1392. [FENG Ruiling, WU Lijian, ZHANG Yiming. Study on the consolidation properties of peaty soil[J]. Chinese Journal of Underground Space and Engineering,2019,15(5):1384 − 1392. (in Chinese with English abstract)
FENG Ruiling, WU Lijian, ZHANG Yiming. Study on the consolidation properties of peaty soil[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1384-1392. (in Chinese with English abstract)
[13] 李育红, 周庆云, 程芸. 滇池湖相泥炭土固结系数及次固结系数研究[J]. 工程勘察,2019,47(5):26 − 32. [LI Yuhong, ZHOU Qingyun, CHENG Yun. Study on the coefficient of consolidation and secondary consolidation of lacustrine peat soil around the Dian Lake[J]. Geotechnical Investigation & Surveying,2019,47(5):26 − 32. (in Chinese with English abstract)
LI Yuhong, ZHOU Qingyun, CHENG Yun. Study on the coefficient of consolidation and secondary consolidation of lacustrine peat soil around the Dian Lake[J]. Geotechnical Investigation & Surveying, 2019, 47(5): 26-32. (in Chinese with English abstract)
[14] Standard test methods for moisture, ash, and organic matter of peat and other organic soils: ASTMD 2974—14[S]. 2014.
[15] Standard test methods for laboratory determination of the fiber content of peat samples by dry mass: ASTMD 1997—13[S]. 2013.
[16] Standard classification of peat samples by laboratory testing: ASTMD 4497—13[S]. 2007.
[17] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[18] 方超. 高原湖相泥炭土工程性质原生各向异性试验研究[D]. 昆明: 昆明理工大学, 2019
FANG Chao. Experimental study on inherent anisotropy of engineering properties of plateau lacustrine peat soil[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese with English abstract)
[19] 彭博. 云南大理地区强泥炭质土固结特性的试验研究[D]. 北京: 北京交通大学, 2019
PENG Bo. Experimental study on consolidation of peat soil in Dali area of Yunnan[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)
[20] ONITSUKA K, HONG Z S, HARA Y, et al. Interpretation of oedometer test data for natural clays[J]. Soils and Foundations,1995,35(3):61 − 70. doi: 10.3208/sandf.35.61
[21] HONG Z S, ONITSUKA K. A method of correcting yield stress and compression index of ariake clays for sample disturbance[J]. Soils and Foundations,1998,38(2):211 − 222. doi: 10.3208/sandf.38.2_211
[22] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报,1998,20(1):100 − 111. [SHEN Zhujiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):100 − 111. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1998.01.025
SHEN Zhujiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1998.01.025
[23] 加瑞, 雷华阳. 有明黏土各向异性固结特性的试验研究[J]. 岩土力学,2019,40(6):2231 − 2238. [JIA Rui, LEI Huayang. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics,2019,40(6):2231 − 2238. (in Chinese with English abstract)
JIA Rui, LEI Huayang. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238. (in Chinese with English abstract)
[24] 雷华阳, 任倩, 张文振, 等. 吹填超软土固结特性试验分析[J]. 工程地质学报,2014,22(6):1039 − 1045. [LEI Huayang, REN Qian, ZHANG Wenzhen, et al. Consolidation property of ultra soft soil[J]. Journal of Engineering Geology,2014,22(6):1039 − 1045. (in Chinese with English abstract)
LEI Huayang, REN Qian, ZHANG Wenzhen, et al. Consolidation property of ultra soft soil[J]. Journal of Engineering Geology, 2014, 22(6): 1039-1045. (in Chinese with English abstract)
[25] MESRI G, GODLEWSKI P M. Time and stress compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division,1977,103(5):417 − 430. doi: 10.1061/AJGEB6.0000421
[26] WALKER L K. Undrained creep in a sensitive clay[J]. Géotechnique,1969,19(4):515 − 529.
[27] O’KELLY B C. Compression and consolidation anisotropy of some soft soils[J]. Geotechnical & Geological Engineering,2006,24(6):1715 − 1728.
[28] 孙德安, 申海娥. 上海软土的流变特性试验研究[J]. 水文地质工程地质,2010,37(3):74 − 78. [SUN Dean, SHEN Haie. Experimental study on rheology behaviour of Shanghai soft clay[J]. Hydrogeology & Engineering Geology,2010,37(3):74 − 78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.016
SUN Dean, SHEN Haie. Experimental study on rheology behaviour of Shanghai soft clay[J]. Hydrogeology & Engineering Geology, 2010, 37(3): 74-78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.016
[29] 邓岳保, 陈菲, 刘干斌, 等. 宁波土层的流变固结试验及流变模型参数研究[J]. 水文地质工程地质,2017,44(5):46 − 51. [DENG Yuebao, CHEN Fei, LIU Ganbin, et al. A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology,2017,44(5):46 − 51. (in Chinese with English abstract)
DENG Yuebao, CHEN Fei, LIU Ganbin, et al. A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 46-51. (in Chinese with English abstract)
[30] BERRY P L, VICKERS B. Consolidation of fibrous peat[J]. Journal of the Geotechnical Engineering Division,1975,101(8):741 − 753. doi: 10.1061/AJGEB6.0000183
期刊类型引用(5)
1. 任思远,倪万魁,陈军廷,拓文鑫,杨珍珍. 基于分数阶理论的软泥岩一维次固结蠕变模型. 吉林大学学报(地球科学版). 2024(01): 242-252 . 百度学术 2. 朱瑾彦,李磊,鲁旭,刘帅. FeCl_3溶液调理下的污泥固结压缩特性研究. 环境科学与管理. 2024(05): 79-84 . 百度学术 3. 应胜一,陈波,许四法,金盼. 结构性对软黏土次固结特性影响的试验研究. 长沙理工大学学报(自然科学版). 2024(03): 35-43 . 百度学术 4. 鲁跃东. 墨脱野生金线莲栽培技术研究及原生地野外回归可行性探索. 西藏科技. 2023(06): 20-26 . 百度学术 5. 范荣全,王红梅,常朝凯,曾文慧,罗毅,焦一飞,张文涛. 川西高原不同纤维含量泥炭质土工程特性研究. 成都理工大学学报(自然科学版). 2023(05): 569-576 . 百度学术 其他类型引用(4)
-