青藏高原积雪深度和雪水当量的被动微波遥感反演

车涛, 李新, 高峰

冰川冻土 ›› 2004, Vol. 26 ›› Issue (3) : 363-368.

PDF(967 KB)
PDF(967 KB)
冰川冻土 ›› 2004, Vol. 26 ›› Issue (3) : 363-368. DOI: 10.7522/j.issn.1000-0240.2004.0059  CSTR: 32264.14.j.issn.1000-0240.2004.0059
冰雪遥感

青藏高原积雪深度和雪水当量的被动微波遥感反演

  • 车涛, 李新, 高峰
作者信息 +

Estimation of Snow Water Equivalent in the Tibetan Plateau Using Passive Microwave Remote Sensing Data (SSM/I)

  • CHE Tao, LI Xin, GAO Feng
Author information +
文章历史 +

摘要

利用1993年1月份的SSM/I亮度温度数据反演了青藏高原的雪水当量,首先使用被动微波SSM/I数据19和37GHz的水平极化数据来反演雪深,根据积雪时间的函数来计算实时的雪密度,由雪的深度和密度计算出雪水当量.最后,利用SSM/I数据的19和37GHz的垂直极化亮度温度梯度对计算出的雪水当量进行回归分析,得到了利用SSM/I数据直接反演雪水当量的算法.

Abstract

Snow depth and snow water equivalent are the most import factors in the hydrologic model and climate model. So far, there is not an operational algorithm to estimate the snow water equivalent from passive microwave remote sensing data (SSM/I) in the Tibetan Plateau. In this study the SSM/I brightness temperature data in January 1993 are used to estimate the snow water equivalent SWE in the plateau. The frequencies of SSM/I data used to retrieve snow depth are 19 and 37 GHz in horizontal polarization. The results show that all available algorithms overestimate the snow depth in the Tibetan Plateau. In this paper the reasons of overestimation of snow depth from several aspects are analyzed, such as the water content of snow pack, large water bodies (e.g. lakes), and the abnormal field snow depth data. After eliminating some futile data (including the passive microwave brightness temperature values and snow depth data in the weather stations), an improved algorithm has been established to retrieve the snow depth from the difference of 19 and 37 GHz brightness temperatures in horizontal polarization. Here, snow density is obtained by a time function of fresh snow density. The snow depth and density were converted to the snow water equivalent, and are regarded as the ground truth. In finally, the TB vertically polarized differences of 19 and 37 GHz are regressed with the SWE. Using the statistical method, a simple and practical algorithm is developed to estimate the snow water equivalent from the differences of 19 and 37 GHz in vertical polarization.

关键词

被动微波遥感 / 雪水当量 / SSM/I数据

Key words

snow water equivalent / passive microwave / remote sensing / SSM/I data / Tibetan Plateau

引用本文

导出引用
车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3): 363-368 https://doi.org/10.7522/j.issn.1000-0240.2004.0059
CHE Tao, LI Xin, GAO Feng. Estimation of Snow Water Equivalent in the Tibetan Plateau Using Passive Microwave Remote Sensing Data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 363-368 https://doi.org/10.7522/j.issn.1000-0240.2004.0059
中图分类号: P343.6   

参考文献

[1] Gao Rong, Wei Zhigang, Dong Wenjie. Analysis of the cause of the differentia in interannual variation between smow cover and seasonal frozen soil in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 153-159. [高荣, 韦志刚, 董文杰. 青藏高原冬春积雪和季节冻土年际变化[J]. 冰川冻土, 2004, 26(2): 153-159.]
[2] Matzler C. Applications of the interaction of microwaves with the natural snow cover [J]. Remote Sensing Rev, 1987, 2: 259-391.
[3] Foster J L, Chang A T C, Hall D K, et al. Derivation of snow water equivalent in boreal forests using microwave radiometry [J]. Arctic, 1991, 44 (Supp. 1): 147-152.
[4] Hallikainen M T. Microwave radiometry on snow [J]. Adv. Space Res., 1989, 9 (1): 267-275.
[5] Chang A T C, Foster J L, Hall D K, et al. Snow water equivalent accumulation by microwave radiometry [J]. Cold Regions Science and Technology, 1982, 5(3): 259-267.
[6] Walker A E, Goodison B E. Discrimination of a wet snow cover using passive microwave satellite data [J]. Ann. Glaciol., 1993, 17: 307-311.
[7] Goodison B E, Walker A E. Using of snow cover derived from satellite passive microwave data as an indicator of climate change [J]. Ann. Glaciol., 1993, 17: 137-142.
[8] Goodison B E, Walk A E. Canadian development and use of snow cover information from passive microwave satellite data [A]. Choudhury Y H, Njoku E G, Pampaloni P. ESA/NASA International Workshop [C]. VSP, Utrecht, The Netherlands, 1994. 245-262.
[9] Tait A B, Armstrong R. Evaluation of SMMR satellite-derived snow depth using ground-based measurements [J]. International J. Remote Sensing, 1996, 17: 657-665.
[10] Chang A T C, Foster J L, Hall D K. Effects of forest on the snow parameters derived from microwave measurements during the boreal [J]. Hydrol. Proc., 1996, 10: 1565-1574.
[11] Gan T Y. Passive microwave snow research in Canadian high arctic [J]. Caniau J. Remote Sens., 1996, 22(1): 36-44.
[12] Foster J L, Chang A T C, Hall D K. Comparison snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology [J]. Remote Sens. Environ., 1997, 62: 132-142.
[13] Tait A B. Estimation of snow water equivalent using passive microwave radiation data [J]. Remote Sens. Environ., 1998, 64(2): 286-291.
[14] Singh P R, Gan T Y. Retrieval of snow water equivalent using passive microwave brightness temperature data [J]. Remote Sens. Environ., 2000, 74: 275-286.
[15] Chang A T C, Foster J L, Hall D K. Nibus-7 SMMR derived global snow cover parameters [J]. Ann. Glaciol., 1987, 9: 39-44.
[16] Chang A T C, Foster J L, Hall D K, et al. The use of microwave radiometer data for characterizing snow storage in western China [J]. Ann. Glaciol., 1992, 16: 215-219.
[17] Cao Meisheng, Li Peiji, Robinson D A, et al. Evaluation and primary application of microwave remote sensing SMMR derived snow cover in Western China [J]. Remote Sensing of Environment, 1993, 8(3): 260-269. [曹梅盛, 李培基, Robinson D A, 等. 中国西部积雪SSMR微波遥感的评价与初步应用[J]. 环境遥感, 1993, 8(3): 260-269.]
[18] Cao Meisheng, Li Peiji. Microwave remote sensing monitoring of snow in West China [J]. Journal of Mountain Research, 1994, 12(4): 231-233. [曹梅盛, 李培基. 中国西部积雪微波遥感监测[J]. 山地研究, 1994, 12(4): 231-233.]
[19] Matzler C. Passive microwave signatures of landscapes in winter [J]. Meteorol. Atmos. Phys., 1994, 54: 241-260.
[20] Grody N C. Classification of snow cover and precipitation using the special sensor microwave imager [J]. Journal of Geophysical Research, 1991, 96: 7 423-7 435.
[21] Neale C M U, McFarland M L, Chang K. Land-surface-type classification using microwave brightness temperatures from the special sensor microwave/imager [J]. IEEE Trans. Geosci. Remote Sens., 1990, 28(5): 829 837.
[22] Armstrong R L, Brodzik M J. An earth-gridded SSM/I data set for cryospheric studies and global change monitoring [J]. Adv. Space Res., 1995, 16(10): 155-163.
[23] Chang A T C, Chiu L S. Satellite estimation of snow water equivalent: classification of physiographic regimes [A]. Proceedings of IGARSS 91 Symposium on Remote Sensing: Global Monitoring for Earth Management[C]. Helsinki University of Technology, Espoo, Finland, 1991, June 3-6.1951-1953.
[24] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Active and Passive (Vol. III) [M]. Dedham, Mass: Artech House, Inc., 1987. 1 612.
[25] Spencer R W, Goodman H M, Hood R E. Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal [J]. J. Atmo. Oceanic Tech., 1989, 6: 254-273.
[26] Martinec J. Expected snow loads on structures from incomplete hydrological data [J]. J. Glacial., 1977, 19(81): 185-95.
[27] Goodison B E, Rubinstein I, Thirkettle F W, et al. Determination of snow water equivalent on the Canadian prairies using microwave radiometry [J]. IAHS Publ., 1986, 155: 163-173.

基金

国家自然科学基金项目(90202014;49971060)资助
PDF(967 KB)

3616

Accesses

0

Citation

Detail

段落导航
相关文章

/