
中南半岛旱季VIIRS活跃火的空间特征与国别差异
Spatial characteristics and national differences of active fires derived from Visible Infrared Imaging Radiometer Suite (VIIRS) in Mainland Southeast Asia in the dry season during 2012-2019
热带是全球活跃火(active fire)的集中发生区,客观认识其空间特征、国别差异及其动态变化对评估区域生物质燃烧及其碳排放等具有重要意义。作为热带季风气候典型区,中南半岛旱季活跃火发生发展空间特征及其动态变化仍缺乏清晰认识。为此,论文利用可见光红外成像辐射仪(VIIRS) S-NPP 2012—2019年活跃火矢量数据,基于核密度与空间自相关评价了中南半岛及国别旱季尤其是其特征月份(2—4月)活跃火发生发展的密集程度、集聚特征及其动态变化。结果表明:① 中南半岛活跃火核密度低值区占比最大(79%),高值区最小(4%);柬埔寨、缅甸、老挝等经济落后国家的核密度均值明显高于泰国和越南;2012—2019年核密度高值区具有朝高海拔、向内陆与趋边境等分布特征,且柬埔寨东北部长居高值区。② 活跃火核密度中值区变化集中在1—4月,且多分布在低、高值区周围;高值区变化集中在2—4月,由柬埔寨东北部逐渐向缅甸东/西部、泰国西北部以及老挝北/南部转移。③ 半岛与5国活跃火核密度在旱季具有显著空间正相关性,空间集聚类型以“高—高”型和“低—低”型集聚为主,越南、柬埔寨等国局部自相关性强于泰国和老挝。
The tropics is the hotspot of global active fires. It is of great significance to reveal the spatial characteristics and dynamic changes of active fires for assessing regional biomass burning and carbon emissions. Based on the active fire vector data (2012-2019) of Visible Infrared Imaging Radiometer Suite (VIIRS) Suomi National Polar-Orbiting Partnership (S-NPP) provided by the NASA's Fire Information for Resource Management System (FIRMS), the occurrence density and agglomeration degree of active fires in Mainland Southeast Asia were quantified and analyzed using kernel density and spatial autocorrelation methods, in order to reveal the spatiotemporal variations in active fire occurrence frequency within the dry season, especially in February and April, during 2012-2019. The results show that: 1) The occurrence of active fires was dominated by low density (79%), and the high density areas had the smallest proportion (4%). Active fires are more likely to occur in economically backward countries (Cambodia, Myanmar, and Laos) and regions (for example, eastern Cambodia and northern Laos). High kernel density areas tend to distribute in high elevation, inland, and border areas in particular. Cambodia, especially its northeastern region, was always an area with high occurrence density of active fires in the study period. 2) The changes in medium density area of active fires were concentrated between January and April, which was mostly distributed around the low and high density areas, while the changes in high density areas were concentrated between February and April, spatially gradually shifted from northeastern Cambodia to western and eastern Myanmar, northwestern Thailand, and northern and southern Laos. 3) The density of active fire occurrence showed significant spatial autocorrelation in Mainland Southeast Asia and the five countries during the dry season. The spatial clustering types of the kernel density of active fires are dominated by "high-high" and "low-low" agglomerations in the dry season, especially between February and April. The local spatial autocorrelation of the kernel density of active fires in Vietnam and Cambodia is stronger than those in Thailand and Laos.
活跃火 / VIIRS / 核密度 / 空间自相关 / 空间分布 / 中南半岛 {{custom_keyword}} /
active fires / VIIRS / kernel density / spatial autocorrelation / spatial distribution / Mainland Southeast Asia {{custom_keyword}} /
表1 活跃火核密度等级划分标准Tab.1 Classification criteria of kernel density of active fires (万次/km2) |
等级 | 低 | 较低 | 中 | 较高 | 高 |
---|---|---|---|---|---|
范围 | 0~30 | 30~70 | 70~120 | 120~210 | >210 |
图2 中南半岛2012—2019年旱季活跃火不同等级核密度面积占比变化Fig.2 Changes in the areal proportion of active fires under low, medium, and high kernel density in Mainland Southeast Aisa in the dry season, 2012-2019 |
表2 中南半岛及其5国11月—次年4月活跃火不同等级核密度面积变化Tab.2 Monthly changes in the total area of active fires under various kernel density in Mainland Southeast Aisa and its five countries between Novermber and April (万km2) |
核密度 | 地区 | 11—12月 | 12月—次年1月 | 1—2月 | 2—3月 | 3—4月 |
---|---|---|---|---|---|---|
低值区 | 泰国 | 1.12 | 1.40 | 19.82 | 9.03 | 0.43 |
越南 | 0.14 | 0.85 | 2.57 | 6.57 | 0.84 | |
缅甸 | 0.03 | 0.23 | 18.10 | 26.35 | 7.02 | |
老挝 | 0 | 0.66 | 4.52 | 16.20 | 1.00 | |
柬埔寨 | 4.77 | 6.31 | 3.34 | 0.65 | 0.07 | |
总计 | 6.06 | 9.45 | 48.35 | 58.80 | 9.36 | |
中值区 | 泰国 | 1.02 | 1.15 | 15.88 | 4.24 | 2.22 |
越南 | 0.14 | 0.40 | 1.81 | 3.50 | 2.62 | |
缅甸 | 0.03 | 0.23 | 8.26 | 6.90 | 14.33 | |
老挝 | 0 | 0.31 | 2.94 | 5.20 | 2.71 | |
柬埔寨 | 3.05 | 2.20 | 2.00 | 2.33 | 1.90 | |
总计 | 4.24 | 4.29 | 30.89 | 22.17 | 23.78 | |
高值区 | 泰国 | 0.10 | 0.36 | 4.31 | 11.94 | 0.27 |
越南 | 0 | 0.59 | 1.15 | 4.72 | 0.20 | |
缅甸 | 0 | 0 | 10.07 | 26.82 | 4.73 | |
老挝 | 0 | 0.35 | 1.90 | 13.52 | 3.19 | |
柬埔寨 | 1.72 | 7.17 | 3.35 | 0.54 | 0.54 | |
总计 | 1.82 | 8.47 | 20.78 | 57.54 | 8.93 |
表3 中南半岛及其5国2012—2019年旱季活跃火核密度局部空间自相关类型占比统计Tab.3 Proportions of local spatial autocorrelation types of kernel density of active fires in Mainland Southeast Aisa and its five countries in the dry season, 2012-2019 (%) |
地区 | 集聚类型 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 均值 |
---|---|---|---|---|---|---|---|---|---|---|
中南半岛 | 高—高 | 31.73 | 24.13 | 25.72 | 21.93 | 24.53 | 22.73 | 19.85 | 28.24 | 24.86 |
低—低 | 42.57 | 33.77 | 35.40 | 34.15 | 35.63 | 37.03 | 32.85 | 36.80 | 36.02 | |
总计 | 74.30 | 57.89 | 61.12 | 56.08 | 60.16 | 59.76 | 52.70 | 65.05 | 60.88 | |
泰国 | 高—高 | 21.04 | 8.96 | 11.34 | 9.75 | 19.71 | 10.52 | 6.69 | 22.84 | 13.86 |
低—低 | 59.36 | 39.50 | 48.56 | 42.62 | 34.92 | 41.72 | 42.83 | 38.62 | 43.52 | |
总计 | 80.41 | 48.46 | 59.91 | 52.37 | 54.64 | 52.24 | 49.52 | 61.46 | 57.38 | |
越南 | 高—高 | 12.67 | 4.85 | 11.01 | 6.04 | 5.27 | 3.04 | 4.80 | 2.70 | 6.30 |
低—低 | 70.73 | 70.01 | 63.63 | 61.95 | 69.21 | 80.84 | 70.43 | 78.01 | 70.60 | |
总计 | 83.40 | 74.87 | 74.65 | 67.99 | 74.48 | 83.88 | 75.23 | 80.71 | 76.90 | |
缅甸 | 高—高 | 40.91 | 35.66 | 36.11 | 26.14 | 23.01 | 33.39 | 26.16 | 30.09 | 31.43 |
低—低 | 28.03 | 27.03 | 24.70 | 31.79 | 38.05 | 28.36 | 23.66 | 33.47 | 29.38 | |
总计 | 68.93 | 62.69 | 60.81 | 57.93 | 61.06 | 61.76 | 49.82 | 63.57 | 60.82 | |
老挝 | 高—高 | 37.46 | 19.78 | 23.11 | 24.43 | 25.41 | 18.17 | 19.79 | 41.76 | 26.24 |
低—低 | 27.78 | 14.28 | 17.74 | 6.58 | 12.47 | 16.48 | 10.96 | 10.67 | 14.62 | |
总计 | 65.24 | 34.06 | 40.85 | 31.01 | 37.88 | 34.64 | 30.75 | 52.43 | 40.86 | |
柬埔寨 | 高—高 | 46.40 | 56.18 | 53.37 | 61.42 | 69.09 | 51.25 | 52.54 | 54.81 | 55.63 |
低—低 | 30.91 | 17.45 | 19.48 | 13.93 | 11.05 | 23.52 | 18.47 | 19.45 | 19.28 | |
总计 | 77.31 | 73.62 | 72.85 | 75.35 | 80.15 | 74.77 | 71.01 | 74.26 | 74.91 |
表4 中南半岛及其5国2—4月活跃火核密度局部空间自相关类型占比统计Tab.4 Proportions of local spatial autocorrelation types of kernel density of active fires in Mainland Southeast Aisa and its countries from February to April, 2012-2019 (%) |
地区 | 集聚类型 | 2月 | 3月 | 4月 | 地区 | 集聚类型 | 2月 | 3月 | 4月 |
---|---|---|---|---|---|---|---|---|---|
中南半岛 | 高—高 | 16.10 | 26.83 | 25.02 | 缅甸 | 高—高 | 15.45 | 41.87 | 36.62 |
低—低 | 32.09 | 41.89 | 39.12 | 低—低 | 36.25 | 31.09 | 16.84 | ||
总计 | 48.18 | 68.72 | 64.15 | 总计 | 51.71 | 72.96 | 53.46 | ||
泰国 | 高—高 | 6.72 | 19.03 | 11.91 | 老挝 | 高—高 | 6.79 | 28.20 | 53.67 |
低—低 | 18.77 | 58.47 | 64.58 | 低—低 | 46.12 | 12.28 | 12.88 | ||
总计 | 25.49 | 77.50 | 76.49 | 总计 | 52.92 | 40.48 | 66.55 | ||
越南 | 高—高 | 5.61 | 2.63 | 5.47 | 柬埔寨 | 高—高 | 69.13 | 29.59 | 10.47 |
低—低 | 57.05 | 68.95 | 62.47 | 低—低 | 4.46 | 31.92 | 49.50 | ||
总计 | 62.66 | 71.58 | 67.94 | 总计 | 73.59 | 61.51 | 59.97 |
[1] |
简悦, 傅宗玫. 中南半岛春季生物质燃烧烟羽高度及其影响[C]// 中国气象学会. 创新驱动发展提高气象灾害防御能力: S10大气物理学与大气环境. 南京: 中国气象学会, 2013: 72-89.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
杨扬. 火灾对大兴安岭地区森林碳储量、植物组成多样性和群落结构影响研究[D]. 哈尔滨: 东北林业大学, 2019.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张晓玉, 田晓瑞. 厄尔尼诺/拉尼娜对大兴安岭森林火险天气的影响[J]. 林业科学研究, 2018,31(6):55-62.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析[J]. 资源科学, 2019,41(8):1526-1540.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
李文君, 肖池伟, 封志明, 等. 2015年厄尔尼诺年东南亚主要国家活跃火发生类型与影响分析[J]. 自然资源学报, 2020,35(10):2539-2552.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
刘佳, 梁一行, 李鹏, 等. 2001—2018年印度尼西亚MODIS活跃火的发生特征与响应[J]. 地理学报, 2020,75(9):1907-1920.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
刘怡媛, 李鹏, 肖池伟, 等. 老挝VIIRS活跃火的主要自然地理要素特征[J]. 地理研究, 2020,39(3):749-760.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报(信息科学版), 2016,41(2):221-227.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
黄聪, 赵小敏, 郭熙, 等. 基于核密度的余江县农村居民点布局优化研究[J]. 中国农业大学学报, 2016,21(11):165-174.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
何炬, 张雪松, 邓振, 等. 多尺度下农村居民点空间分布特征及其影响因素研究[J]. 中国农业资源与区划, 2019,40(6):8-17.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019,74(7):1374-1391.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
张茂茂, 张雪松, 何炬, 等. 基于村域尺度的鄂北地区耕地时空变化特征分析: 以湖北省随县厉山镇为例[J]. 中国农业大学学报, 2019,24(9):179-189.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
廖谌婳, 封志明, 李鹏, 等. 缅老泰交界地区刀耕火种农业的时空变化格局[J]. 地理研究, 2014,33(8):1529-1541.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |