首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the sunspot transition region
Authors:Maltby  P  Brynildsen  N  Fredvik  T  Kjeldseth-Moe  O  Wilhelm  K
Institution:(1) Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway;(2) Max-Planck-Institut für Aeronomie, D-37191 Katlenburg–Lindau, Germany
Abstract:

The EUV line emission and relative line-of-sight velocity in the transition region between the chromosphere and corona of 36 sunspot regions are investigated, based on observations with the Coronal Diagnostic Spectrometer – CDS and the Solar Ultraviolet Measurements of Emitted Radiation – SUMER on the Solar and Heliospheric Observatory – SOHO. The most prominent features in the transition-region intensity maps are the sunspot plumes. In the temperature range between log T=5.2 and log T=5.6 we find that 29 of the 36 sunspots contain one or two sunspot plumes. The relative line-of-sight velocity in sunspot plumes is high and directed into the Sun in the transition region, for 19 of the sunspots the maximum velocity exceeds 25 km s?1. The velocity increases with increasing temperature, reaches a maximum close to log T=5.5 and then decreases abruptly.

Attention is given to the properties of oscillations with a period of 3 min in the sunspot transition region, based on observations of six sunspots. Comparing loci with the same phase we find that the 3-min oscillations affect the entire umbral transition region and part of the penumbral transition region. Above the umbra the observed relation between the oscillations in peak line intensity and line-of-sight velocity is compatible with the hypothesis that the oscillations are caused by upward-propagating acoustic waves. Information about intensity oscillations in the low corona is obtained from observations of one sunspot in the 171 Å channel with the Transition Region And Coronal Explorer – TRACE. We conclude that we observe the 3-min sunspot oscillations in the chromosphere, the transition region and the low corona. The oscillations are observable over a wider temperature range than the sunspot plumes, and show a different spatial distribution than that of the plumes.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号