首页 | 本学科首页   官方微博 | 高级检索  
     检索      

闪电河流域水循环和能量平衡遥感综合试验
引用本文:赵天杰,施建成,徐红新,孙彦龙,陈德清,崔倩,贾立,黄硕,牛升达,李秀伟,阎广建,陈良富,柳钦火,赵凯,郑兴明,赵利民,郑超磊,姬大彬,熊川,王天星,李睿,潘金梅,闻建光,穆西晗,余超,郑姚闽,蒋玲梅,柴琳娜,卢麾,姚盼盼,马建威,吕海深,武建军,赵伟,杨娜,郭鹏,李玉霞,胡路,耿德源,张子谦,胡建峰,杜爱萍.闪电河流域水循环和能量平衡遥感综合试验[J].遥感学报,2021,25(4):871-887.
作者姓名:赵天杰  施建成  徐红新  孙彦龙  陈德清  崔倩  贾立  黄硕  牛升达  李秀伟  阎广建  陈良富  柳钦火  赵凯  郑兴明  赵利民  郑超磊  姬大彬  熊川  王天星  李睿  潘金梅  闻建光  穆西晗  余超  郑姚闽  蒋玲梅  柴琳娜  卢麾  姚盼盼  马建威  吕海深  武建军  赵伟  杨娜  郭鹏  李玉霞  胡路  耿德源  张子谦  胡建峰  杜爱萍
作者单位:1.中国科学院空天信息创新研究院 遥感科学国家重点实验室, 北京 100101;2.中国科学院国家空间科学中心, 北京 100190;3.上海航天电子技术研究所, 上海 201109;4.水利部信息中心, 北京 100053;5.上海卫星工程研究所, 上海 201109;6.上海航天技术研究院, 上海 201109;7.北京师范大学, 北京 100875;8.中国科学院东北地理与农业生态研究所, 长春 130102;9.西南交通大学, 成都 611756;10.中山大学 测绘科学与技术学院, 珠海 519082;11.北京工商大学, 北京 100048;12.清华大学, 北京 100084;13.中国水利水电科学研究院, 北京 100038;14.河海大学, 南京 210098;15.中国科学院水利部成都山地灾害与环境研究所, 成都 610041;16.河南理工大学, 焦作 454000;17.山东农业大学, 泰安 271018;18.电子科技大学, 成都 611731;19.南京大学, 南京 210023;20.锡林郭勒盟水文勘测局, 锡林郭勒 027300;21.锡林郭勒盟气象台, 锡林郭勒 026000
基金项目:国家重大科学研究计划 (编号: 2015CB953700);民用航天“十三五”技术预先研究项目;中国科学院青年创新促进会 (编号: 2016061)
摘    要:遥感试验是进行遥感原理的验证、遥感模型与反演方法的发展、遥感产品的真实性检验,推动卫星计划的论证实施及其观测在地球系统科学中应用的重要途径。闪电河流域水循环和能量平衡遥感综合试验以滦河上游闪电河流域为核心试验区,以地球表层系统的水循环过程和能量平衡为研究对象,旨在通过天—空—地一体化的观测手段,针对不同典型地表类型开展全波段主被动协同遥感观测,研究异质地表和山地条件下像元尺度遥感关键参量的观测方案,研究重要水热参量的遥感方法及其同陆面/水文过程模型的结合,支撑国家民用空间基础设施和空间科学先导专项相关卫星计划的论证实施。其中,航空飞行遥感试验搭载L波段主被动一体化微波载荷、双角度热红外相机、四波段多光谱相机和高光谱成像仪进行协同观测,实现了土壤水分、组分温度、植被含水量、叶面积指数等地表参数以及湖泊、水库、湿地等的遥感监测;地面同步观测试验利用车载微波辐射计、地基雷达和光谱仪进行了典型地物如裸土、植被、水体、人工目标等的遥感观测,并按照样区—样方—样点的多尺度嵌套方案进行了地表参数的同步采样,获取了该地区关键地表参数的短时期时空变化特征;同时配合卫星和机载观测,在闪电河流域完成了土壤温湿度、地表水热通量、地表辐射四分量、降水等气象要素的地面观测网络的建设,为验证地表辐射/散射遥感模型,发展、优化和验证水热参量遥感反演算法,研究地表水热参量尺度效应与尺度转化问题提供了重要平台,将促进陆表能量与水分交换过程的理解及其对全球变化的作用和反馈机制的研究。

关 键 词:遥感试验  水循环  能量平衡  闪电河流域  航空遥感  观测网络
收稿时间:2019/10/1 0:00:00

Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin
ZHAO Tianjie,SHI Jiancheng,XU Hongxin,SUN Yanlong,CHEN Deqing,CUI Qian,JIA Li,HUANG Shuo,NIU Shengd,LI Xiuwei,YAN Guangjian,CHEN Liangfu,LIU Qinhuo,ZHAO Kai,ZHENG Xingming,ZHAO Limin,ZHENG Chaolei,JI Dabin,XIONG Chuan,WANG Tianxing,LI Rui,PAN Jinmei,WEN Jianguang,MU Xihan,YU Chao,ZHENG Yaomin,JIANG Lingmei,CHAI Linn,LU Hui,YAO Panpan,MA Jianwei,LYU Haishen,WU Jianjun,ZHAO Wei,YANG N,GUO Peng,LI Yuxi,HU Lu,GENG Deyuan,ZHANG Ziqian,HU Jianfeng,DU Aiping.Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin[J].Journal of Remote Sensing,2021,25(4):871-887.
Authors:ZHAO Tianjie  SHI Jiancheng  XU Hongxin  SUN Yanlong  CHEN Deqing  CUI Qian  JIA Li  HUANG Shuo  NIU Shengd  LI Xiuwei  YAN Guangjian  CHEN Liangfu  LIU Qinhuo  ZHAO Kai  ZHENG Xingming  ZHAO Limin  ZHENG Chaolei  JI Dabin  XIONG Chuan  WANG Tianxing  LI Rui  PAN Jinmei  WEN Jianguang  MU Xihan  YU Chao  ZHENG Yaomin  JIANG Lingmei  CHAI Linn  LU Hui  YAO Panpan  MA Jianwei  LYU Haishen  WU Jianjun  ZHAO Wei  YANG N  GUO Peng  LI Yuxi  HU Lu  GENG Deyuan  ZHANG Ziqian  HU Jianfeng  DU Aiping
Institution:1.State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;2.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;3.Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China;4.Information Center of Ministry of Water Resources of China, Beijing 100053, China;5.Shanghai Institute of Satellite Engineering, Shanghai 201109, China;6.Shanghai Academy of Spaceflight Technology, Shanghai 201109, China;7.Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;8.Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;9.Southwest Jiaotong University, Chengdu 611756, China;10.Sun Yat-sen University, school of Geospatial Engineering and science, Zhuhai 519082, China;11.Beijing Technology and Business University, Beijing 100048, China;12.Department of Earth System Science, Tsinghua University, Beijing 100084, China;13.China Institute of Water Resources and Hydropower Research, Beijing 100038, China;14.Hohai University, Nanjing 210098, China;15.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;16.Henan Polytechnic University, Jiaozuo 454000, China;17.Shandong Agricultural University, Taian 271018, China;18.University of Electronic Science and Technology of China, Chengdu 611731, China;19.Nanjing University, Nanjing 210023, China;20.Xilin Gol League Hydrographic Survey Bureau, Xilin Gol 027300, China;21.Xilin Gol League Meteorological Observatory, Xilin Gol 026000, China
Abstract:Remote sensing experiment is an important tool for the verification of remote sensing principles, development of radiative transfer models and retrieval algorithms, and calibration/validation of satellite products. It can help the demonstration of new satellite missions and the promotion of its application in Earth system science. The comprehensive remote sensing experiment of water cycle and energy balance in the Shandian River (the upper stream of Luan River) integrates the space, airborne and ground based remote sensing technologies to conduct a full-band and active-passive observation of typical elements related to water cycle and energy balance processes of the Earth system. It is aimed to study the spatial-temporal variability and observation strategy of those hydro-thermal elements at various remote sensing scales, to study the remote sensing methodologies of those elements and their application in land surface and hydrology models, and to support the design and feasibility studies of new satellite missions (Terrestrial Water Resources Satellite, Energy Budget Observation Mission) in China.The paper describes the general design of this experiment, its scientific objectives and main compositions including the airborne missions, ground sampling strategies, ground-based observation experiments and key variables measurement through wireless sensor networks. Airborne experiments were conducted to obtain multi-resolution, multi-angle observations of both active and passive microwave together with infrared, multispectral, and hyperspectral data. It enables us to explore the remote sensing of various parameters and the impacts of scaling issues, as well as the incidence angle effects associated with the synthetic aperture radiometer system. Ground-based synchronous observation experiments were carried out based on microwave radiometer, radar and spectroradiometer. Concurrent ground data included soil moisture, ground temperature, vegetation water content and surface roughness, etc. are sampled based on large-medium-small quadrats to cover a wide range of land surface conditions. Moreover, ground observation networks were established to monitor meteorological parameters, soil temperature and moisture, surface radiation, evapotranspiration, and precipitation, etc.This experiment provides a unique platform to explore the synergy of active, passive microwave and optical data for water cycle and energy balance remote sensing at improved accuracy and resolution. The experiment overview and preliminary analysis of remote sensing and ground data have confirmed that the data set will help to address a variety of science questions of land-atmosphere energy and water exchanges under global change.
Keywords:remote sensing experiment  water cycle  energy balance  Shandian river basin  airborne observation  watershed observation network
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号