首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Meta-analysis of the Effects of Warming and Elevated CO2 on Soil Microbes
Authors:FU Gang  ZHANG Haorui  LI Shaowei  SUN Wei
Institution:1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Soil microbes play important roles in terrestrial ecosystem carbon and nitrogen cycling. Climatic warming and elevated CO2 are two aspects of climatic change. In this study, we used a meta-analysis approach to synthesise observations related to the effects of warming and elevated CO2 on soil microbial biomass and community structure. Ecosystem types were mainly grouped into forests and grasslands. Warming methods included open top chambers and infrared radiators. Experimental settings included all-day warming, daytime warming and nighttime warming. Warming increased soil actinomycetes and saprotrophic fungi, while elevated CO2 decreased soil gram-positive bacteria (G+). Mean annual temperature and mean annual precipitation were negatively correlated with warming effects on gram-negative bacteria (G-) and total phospholipid fatty acid (PLFA), respectively. Elevation was positively correlated with the warming effect on total PLFA, bacteria, G+ and G-. Grassland exhibited a positive response of total PLFA and actinomycetes to warming, while forest exhibited a positive response in the ratio of soil fungi to bacteria (F/B ratio) to warming. The open top chamber method increased G-, while the infrared radiator method decreased the F/B ratio. Daytime warming rather than all-day warming increased G-. Our findings indicated that the effects of warming on soil microbes differed with ecosystem types, warming methods, warming times, elevation and local climate conditions.
Keywords:ecosystem types  elevated CO2  increased temperature  response ratio  warming methods  
点击此处可从《资源与生态学报(英文版)》浏览原始摘要信息
点击此处可从《资源与生态学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号