首页 | 本学科首页   官方微博 | 高级检索  
     检索      

花岗岩类矿床成矿流体形成过程的原位观测实验
引用本文:李建康.花岗岩类矿床成矿流体形成过程的原位观测实验[J].吉林大学学报(地球科学版),2014,44(2):518-526.
作者姓名:李建康
作者单位:1.国土资源部成矿作用与资源评价重点实验室/中国地质科学院矿产资源研究所,北京100037; 2.长安大学地球科学与资源学院,西安710054
基金项目:中国博士后科学基金项目(2008044018);中国博士后科学基金特别资助项目(200902580);国家自然科学基金项目(40702014,41372088);国家深部探测技术与实验研究专项(SinoProbe-03-01);中国地质调查局地质大调查项目(1212011220805)
摘    要:花岗岩浆液态不混溶作用和饱和H2O花岗岩浆的热液出溶作用是花岗岩类矿床成矿流体形成的重要机制。利用最新式热液金刚石压腔,开展了成矿流体形成机制的原位观测实验。在岩浆热液出溶过程的实验中,初始样品为各类硅酸盐和纯H2O或LiCl水溶液,在H2O饱和状态中,硅酸盐熔体珠不断分异出富H2O的流体。花岗岩浆液态不混溶实验的初始样品为NaAlSi3O8-LiAlSiO4-SiO2-LiCl-H2O。在硅酸盐完全重熔后的降温过程中,硅酸盐熔体珠分离出富H2O熔体相和贫H2O熔体相,压力的突然降低促进了相分离的发生。研究表明:岩浆热液的出溶作用发生在H2O饱和的条件下,是岩浆的“第二次”沸腾作用,对花岗岩型稀有金属矿床的形成具有重要意义;花岗岩浆液态不混溶产生的富H2O熔体易于结晶出粗大晶体,暗示岩浆液态不混溶作用可能是一些花岗伟晶岩形成的主要机制。两类成矿流体形成机制实验条件的差异表明,Li是花岗岩浆发生不混溶作用的重要因素。在今后的研究中,应把热液金刚石压腔的原位观测与微束分析技术结合,在高温高压状态下分析成矿元素的迁移和富集规律。

关 键 词:热液金刚石压腔  原位实验  花岗岩浆液态不混溶作用  花岗岩浆沸腾作用  花岗伟晶岩  
收稿时间:2013-06-14

In Situ Observation of Separation Mechanism of Ore-Forming Fluid from Granitic Magma in Granite-Related Deposit
Li Jiankang.In Situ Observation of Separation Mechanism of Ore-Forming Fluid from Granitic Magma in Granite-Related Deposit[J].Journal of Jilin Unviersity:Earth Science Edition,2014,44(2):518-526.
Authors:Li Jiankang
Institution:1.Key Laboratory of Metallogeny and Mineral Resource Assessment/Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing100037, China;
2.College of Earth Science and Resources, Chang’an University, Xi’an710054, China
Abstract:The liquid immiscibility and hydrothermal fluid exsolution from magma are the important separation mechanisms of ore-forming fluid from granite magma. At present, the understanding of the two mechanisms is mainly from researches of melt and fluid inclusions, or none-in-situ experiments. The newest hydrothermal diamond anvil-cell (HDAC) is used to observe the two processes in situ. In exsolution experiments with the initial sample of silicate and pure H2O or LiCl dissolved aqueous fluid, the H2O-rich fluid separated from H2O-saturated silicate melt when H2O is saturated in silicate melt. In the experiment of liquid immiscibility with the initial samples of NaAlSi3O8-LiAlSiO4-SiO2-LiCl-H2O, the silicate melt balls can be separated into a H2O-rich melt and H2O-poor melt during cooling from homogeneous silicate melt. The sharp fall of pressure can induce the liquid immiscibility. These experimental results show that the hydrothermal fluid exsolution occurred in H2O-saturated silicate melt is the second boiling of magma, and plays a great role in the mineralization of granite type deposit. The H2O-rich melt separated from granite magma by liquid immiscibility can crystallize big and oriented crystals, suggesting that liquid immiscibility of granite magma is an important formation mechanism for granite pegmatite. The differences between the above two type experiments suggest that the element Lithium is an important factor for liquid immiscibility in granite magma. In the further research, we should combine the HDAC with microbeam analysis in order to analyze the enrichment process of metal element at high temperature and pressure.
Keywords:hydrothermal diamond anvil-cell  in-situ observation  liquid immiscibility of granitic magma  granitic magma boiling  granitic pegmatite  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号