首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The heat transfer in the region of the Mauna Kea (Hawaii)—constraints from borehole temperature measurements and coupled thermo-hydraulic modeling
Authors:Grit Büttner  Ernst Huenges
Institution:GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473, Potsdam, Germany
Abstract:The objectives of this paper are an understanding of the thermal and hydraulic field because of a negative temperature gradient and cold temperatures in the 1-km-deep borehole of the Hawaiian Scientific Drilling Project (HSDP), located near the coast line. The temperature pattern is attributed to a superposition of thermal and hydraulic processes. In the deeper borehole (HSDP-2, depth 3.1 km) detailed temperature monitoring was performed. Temperature measurements reveal two different thermal regimes. The upper part is characterised by cold temperatures and a negative temperature gradient similar to those observed in the shallow pilot borehole. Below 1100 m, increasing temperatures are observed. Different processes, such as topographically driven groundwater flow, ingress of salt water and conductive heat flow are investigated by numerical modeling. A pure conductive scenario fails to match the temperature measurements, implying that both borehole sections are overprinted by advective conditions. Coupled fluid and heat flow modeling with solute transport yield results that agree with observed temperatures. The results of these simulations suggest that meteoric water flow from the mountain range controls the thermal conditions in the upper part of the borehole. Below this level, the thermal regime is additionally affected by circulation of salt water from the nearby ocean. Each of these flow systems has been observed at other locations: topographically driven fresh water at locations with pronounced topography and ingress of salt water is typical for islands or coastal areas. At Hawaii, they coincide and influence each other, resulting in a salt water interface occurring at greater depth than expected.
Keywords:Heat flow disturbance  Thermo-hydraulic field  Temperature log  Thermal properties  Hydraulic properties  Numeric modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号