首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Blueschist metamorphism and P-T regimes in active subduction zones
Authors:WG Ernst
Institution:Department of Geology and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif.U.S.A.
Abstract:Blueschist-type metamorphism involves the progressive development of some of the following minerals: at low grades, zeolites, pumpellyite, lawsonite + quartz, aragonite, jadeitic pyroxene + quartz; then at higher grades, zoisite-epidote, kyanite, omphacite, garnet and blue-green hornblende. Comparisons of natural assemblages with experimentally determined phase equilibria and oxygen isotopic analyses yield apparent physical conditions in the range 150–500° C at fluid (≈ lithostatic) pressures on the order of 3–8 + kbar. The unusually low metamorphic geothermal gradient indicated is on the order of 10–15°C/km.Blueschist belts seem to be confined to oceanic trench-type environments where they are hypothesized to represent subducted material which has buoyantly returned to the surface since recrystallization. Calculated downward deflections of the isotherms in the subducted lithospheric slabs yield similar or even lower geothermal gradients than deduced from the mineral parageneses. The disposition of relatively high-pressure isogradic surfaces in the upper portions of a model subduction zone demonstrates that the observed sequence of metamorphic facies reflects the direction of lithospheric plate descent.The approximate magnitude of inferred underflow can be gauged by the presence or absence of a contemporaneous high-temperature volcanic + plutonic + metamorphic complex in the non-subducted lithospheric plate. Greater amounts of underflow evidently are required to build up larger, relatively high-temperature, low-pressure terranes.Blueschist belts tend to be associated in time and space, indicating that since Late Paleozoic time, many convergent plate junctions have remained in approximately the same positions relative to the stable lithospheric slabs. The fact that, where preserved, older blueschistic belts, hence plate sutures, are located farther inland suggests that in some cases the subduction zones have stepped seaward with time, allowing, for the episodic return towards the surface of old trench melanges, hence growth of the non-subducted plates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号