首页 | 本学科首页   官方微博 | 高级检索  
     检索      

花岗岩体高温热年代学研究的新思路、方法及计算实例
引用本文:章邦桐,凌洪飞,吴俊奇.花岗岩体高温热年代学研究的新思路、方法及计算实例[J].高校地质学报,2013,19(3):385-402.
作者姓名:章邦桐  凌洪飞  吴俊奇
作者单位:内生金属矿床成矿机制研究国家重点实验室(南京大学),南京大学 地球科学与工程学院,南京 210093
基金项目:中国核工业地质局十二五科技项目(编号2011-D03);内生金属矿床成矿机制研究国家重点实验室研究项目
摘    要:对国内外花岗岩体723 对锆石U-Pb 年龄(t Zr)和全岩Rb-Sr 等时线年龄(t Rb)进行的相关分析, 拟合出相关系数很高
(R =0.997), 回归系数接近l 的线性回归方程(t Zr=1.0005×t Rb+0.493041)。 Δt Zr-Rb(t Zr-t Rb)频数统计分析表明: Δt Zr-Rb呈对
称正态分布(偏度系数C SK=0.193; 峰度系数C KU=6.722), 其均值为0.624 Ma, 众数值为1.0 Ma。这表明花岗岩体锆石U-Pb 定
年的测定结果与全岩Rb-Sr 等时线定年测定结果在允许的误差范围内是一致的。不存在花岗岩体锆石U-Pb 年龄必定大于全
岩Rb-Sr 等时线年龄的规律表明,同位素热年代学方法只适用于研究花岗岩结晶固结后的低温热演化史。 前人根据锆石U-Pb
年龄和全岩Rb-Sr 等时线年龄差值及相应同位素体系封闭温度研究的10 个花岗岩体的冷却速率(CR Zr-Rb)表明,它们与岩
体体积尺度不相关,这有悖于“热物体的体积(质量)愈大,则在相同热物理条件下其冷却速率愈小”的热物理学基本定律。
根据热传导理论及本文作者(2010)提出的侵位结晶时差概念我们得出“在相同热物理学条件下,体积尺度是决定花岗岩
体冷却速率最主要因素”的结论。以上述10 个花岗岩体为例,本文计算得出它们在结晶固结前高温阶段的冷却速率(CR ECTD
并拟合出冷却速率与岩体体积尺度呈幂函数关系:CR ECTD=7544.7×D -2.1686, 计算结果符合热物理学基本定律。

关 键 词:花岗岩体高温热年代学  锆石U-Pb年龄  全岩Rb-Sr等时线年龄  花岗岩侵位-结晶固结时差  花岗岩冷却速率  
修稿时间:2013-03-15

New Thinking, Method and Calculated Examples of High Temperature Thermochronology of Granite Plutons
ZHANG Bangtong , LING Hongfei , WU Junqi.New Thinking, Method and Calculated Examples of High Temperature Thermochronology of Granite Plutons[J].Geological Journal of China Universities,2013,19(3):385-402.
Authors:ZHANG Bangtong  LING Hongfei  WU Junqi
Institution:ZHANG Bangtong;LING Hongfei;WU Junqi;State Key Laboratory for Mineral Deposits Research, School of Earth Sciences, Nanjing University;
Abstract:Using least squares regression procedure, a best regression equation (t Zr=1.0005×t Rb+0.493041) with high correlation
coefficient (R =0.997) is fitted for 723 pairs of zircon U-Pb ages (t Zr) and whole rock Rb-Sr ages (t Rb) of granite plutons. The
frequency analysis of 723 individual values of differences between t Zr and t Rb (Δt Zr-Rb) for granites shows symmetrical normal
distribution (skewness C SK=0.193; kutrocess C KU=6.722) with the Mean of 0.624 Ma and the Mode of 1.0 Ma. These statistical
characteristics indicate that for the granites as a whole, both the zircon U-Pb dating ages and the whole-rock Rb-Sr isochron ages
are consistent within permissible errors. However, because of a time difference between emplacement age and crystallizationsolidification
age, this isotope thermochronological method can be applicable only for the stage after their crystallizationsolidification.
Based on the differences between zircon U-Pb ages and whole-rock Rb-Sr isochron ages and the closure temperatures
of corresponding isotopic systems, previous researchers studied the cooling rates (CR Zr-Rb) and thermal evolution history of 10
granite plutons, but these cooling rates are incorrelate to the volume change of granite plutons and contrary to the basic law of
thermophysics, i.e., the cooling rate of a larger hot body should be slower compared with a smaller one. In this paper, based on the
theory of thermal conductivity and using the concept of time difference between emplacement age and crystallization-consolidation
age, developed by present authors (2010), we come to a conclusion that, at the same thermo-physical conditions, the volume scale is the most important parameter that controls cooling rate of the granite plutons. On the example of existing 10 granites, and for
the high temperature thermal stage from magma emplacement to magma crystallization-consolidation, we derived a power function
regression equation to describe the relationship of cooling rate with volume parameter D: CR ECTD=7544.7×D -2.1686. The calculated
results are obviously more reasonable and evidently conformable to the basic law of thermophysics.
Keywords:high temperature thermochronology of granite plutons  zircon U-Pb age  whole-rock Rb-Sr isochron age  time difference between granite emplacement and crystallization-solidification  cooling rate of granite plutons
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高校地质学报》浏览原始摘要信息
点击此处可从《高校地质学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号