首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铁(氢)氧化物悬液中磷酸盐的吸附-解吸特性研究
引用本文:王小明,孙世发,刘凡,谭文峰,胡红青,冯雄汉.铁(氢)氧化物悬液中磷酸盐的吸附-解吸特性研究[J].地球化学,2012(1):89-98.
作者姓名:王小明  孙世发  刘凡  谭文峰  胡红青  冯雄汉
作者单位:农业部亚热带农业资源与环境重点实验室,华中农业大学资源与环境学院,湖北武汉430070
基金项目:国家自然科学基金重大项目(30890132,30890133),国家自然科学基金(41171197),国家大学生创新眭试验计划项目(091050404)
摘    要:铁(氢)氧化物对P的吸持和释放在一定程度上决定着P的生物有效性和水体富营养化。以两种环境中常见晶质铁氧化物(针铁矿和赤铁矿)为对照,采用X射线衍射(XRD)、透射电镜(TEM)、热重分析(TGA)和孔径分析以及动力学和吸附-解吸热力学平衡等技术方法,研究了弱晶质水铁矿对P吸附-解吸特性,并探讨了相关机制。实验表明,三种矿物对P的吸附分为起始的快速反应和随后的慢速反应,它们均符合准一级动力学过程,反应中OH释放明显滞后于P吸附,P吸附经历了从外围到内囤配位、单齿到多齿配位过渡的过程,与晶质氧化铁比,水铁矿吸附容量和OH释放量更大、慢速吸附反应更快、存在缓慢扩散反应阶段,吸附容量依次是:水铁矿(436μmol/m^2)〉针铁矿(262μmol/m^2)〉赤铁矿(228μmol/m^2),针铁矿和赤铁矿吸附P符合L(Langmuir)模型,而水铁矿更符合F(Fremldlictl)模型。中性盐介质(KCl)中在最大吸附量时P的解吸率依次为:水铁矿(85%)〈针铁矿(10%)〈赤铁矿(125%),柠檬酸通过配体解吸和诱导溶解两种机制促进P的解吸,最大吸附量时解吸率依次是:针铁矿(25%)〈水铁矿(32%)〈赤铁矿(50%)。

关 键 词:铁(氢)氧化物  水铁矿  针铁矿  赤铁矿    吸附和解吸

The P adsorption-desorption characteristics on ferrihydrite and crystalline Fe oxides suspension
WANG Xiao-ming,SUN Shi-fa,LIU Fan,TAN Wen-feng,HU Hong-qing and FENG Xiong-han.The P adsorption-desorption characteristics on ferrihydrite and crystalline Fe oxides suspension[J].Geochimica,2012(1):89-98.
Authors:WANG Xiao-ming  SUN Shi-fa  LIU Fan  TAN Wen-feng  HU Hong-qing and FENG Xiong-han
Institution:(Key Loboratory of Subtropical Agriculture Resource and Environment, Ministry of Agriculture, College of Resources and Environment, HuazhongAgricultural University, Wuhan 430070, China)
Abstract:The retention and release of P onto iron oxides influence and determine the bioavailability and eutrophication of R We study the adsorption-desorption characteristics of P onto ferrihydrite and explore the relevant mechanisms compared with two common crystalline Fe oxides (goethite and hematite), using the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), porosity structure analysis and the methods of kinetics and adsorption-desorption equilibrium. Results show a fast initial adsorption took place in a few minutes followed by a slow reaction process, both of which can be well fitted by first order kinetics. During the reaction, the release of OH lags behind P adsorption and increases step by step, indicating that P adsorption may go through complexation from outer-sphere to inner-sphere, from monodentate to bidentate coordination. Compared with goethite and hematite, ferrihydrite has higher amount of P adsorption and OH release, faster slow reaction process, and exhibits slow diffusion reaction stage. The maximum adsorption capacities are in order of: ferrihydrite (4.36μmol/m^2) 〉〉 goethite (2.62 μmol/m^2) 〉 hematite (2.28μmol/m^2); adsorption isotherms of goethite and hematite agree well with Langmuir model while ferrihydrite exhibits an adsorption isotherm of Freundlich type. Desorption percentage of adsorbed P by neutral electrolyte at maximum adsorption capacities is in order of: ferrihydrite (8.5%) 〈 goethite (10%) 〈 hematite (12.5%). Relatively, citric acid significantly promotes the desorption reaction. Desorption percentages at the maximum adsorption capacity are in order of: goethite (25%) 〈 ferrihydrite (32%) 〈 hematite (50%).
Keywords:iron (hydr)oxides  ferrihydrite  goethite  hematite  P  adsorption-desorption
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号