首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physicochemical factors of formation of Au-As,Au-Sb,and Ag-Sb deposits
Authors:G G Pavlova  A A Borovikov
Institution:(1) Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
Abstract:The physicochemical formation conditions of Au-As, Au-Sb, and Ag-Sb ores characterized by similar paragenetic mineral assemblages and sets of major ore elements but differing in their proportions have been studied. The composition of the solutions filling fluid inclusions in minerals of Au-Sb deposits, combined with mineralogical and geochemical data, indicates that these deposits were formed from a near-neutral to alkalescent chloride-sulfide (<5 wt % NaCl) solution. Au-As and Au-Sb deposits were formed from fluids of the same type, consisting of a predominately CO2-CH4 gas phase with N2 and a low-saline chloride-sulfide solution, where Au and Ag were predominantly transported as dihydrosulfide species and Sb as sulfide and hydroxy complexes. Superimposed minerals of the sulfide-sulfosalt stage that precipitated from chloride-rich solutions (up to 30 wt % NaCl equiv), which contained Ca and Fe chlorides in addition to NaCl, are identified at some Au-Sb deposits. These solutions are similar in composition to the ore-forming fluids of Ag-Sb deposits. Chloride complexes are dominant Au and Ag species in acid chloride-rich solutions of Ag-Sb deposits (up to 38 wt % NaCl equiv), while chloride and hydroxy complexes are characteristic of Sb. These solutions are distinguished by high concentrations of Ag, Sb, Cu, Fe, Mn, Bi, Pb, and Zn. The mineralogical and geochemical specialization of Ag-Sb ore is caused by chemical features of highly concentrated chloride solutions enriched in Ag, Sb, and Cu and by a relatively low Au content within the pH interval 3.5–4.0 (10?6 m). The factors controlling formation of Au-As deposits are a high capacity of a low-chloride sulfide solution with respect to metals and a high Au concentration therein (two orders higher than that of solutions of Ag-Sb deposits). The enrichment of the pyrite-arsenopyrite paragenetic assemblage in gold is a result of juxtaposed stability fields of native gold, arsenopyrite, and pyrite and their mass deposition with a decrease in temperature from 400 to 300°C. The main cause of the specific mineralogy and geochemistry of Au-Sb deposits is a high metal capacity of a near-neutral low-chloride sulfide fluid with respect to Sb, Au, and Ag, but a low Ag content. The mineralogical and fluid inclusion data combined with computer thermodynamic simulation allowed us to establish the factors of ore formation at P-T-X parameters close to natural conditions and made it possible to characterize the joint deposition of gold and silver in quantitative terms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号