首页 | 本学科首页   官方微博 | 高级检索  
     检索      

东海海—气界面二氧化碳通量的季节变化与控制因素研究进展
引用本文:曲宝晓,宋金明,袁华茂,李学刚,李宁,段丽琴,马清霞,陈鑫.东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J].地球科学进展,2013,28(7):783-793.
作者姓名:曲宝晓  宋金明  袁华茂  李学刚  李宁  段丽琴  马清霞  陈鑫
作者单位:1. 中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛266071;中国科学院大学,北京100049
2. 中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛,266071
基金项目:中国科学院创新先导性项目"黄东海典型海域海气界面碳通量",国家重点基础研究发展计划项目"全球生物地球化学模型及其元素循环过程"
摘    要:通过对东海海—气界面二氧化碳(CO2)交换有关研究的总结,剖析了东海表层海水CO2分压(pCO2)的区域分布特征,探讨了海—气界面CO2通量(FCO2)的季节变化规律,诠释了影响海—气界面CO2转移的主要因素.结果表明,东海表层海水pCO2的区域分布具有明显的季节变化,可将其分为冬季、夏季、过渡季节(春季、秋季)3个时段.冬季西部近岸海域由于水体垂直交换强烈,造成表层水体pCO2较高,而中、东部陆架海域由于浮游生物的光合作用使得pCO2较低.夏季近岸河口海域由于陆源输入的影响导致pCO2较高,中、东部陆架海域受温跃层、长江冲淡水、浮游植物的综合作用pCO2较低.春季、秋季为过渡时段,表层海水pCO2分布变化剧烈,受控因素较为复杂.东海全年表现为大气CO2的净汇,其中冬、春、夏为碳汇,其海—气界面FCO2分别为(-6.68±6.93),(-4.94±0.80),(-3.67±1.09)mmol/(m2·d).秋季表现为碳源,通量约为(1.50±8.37)mmoL/(m2·d).东海全年平均通量约为-3.16 mmol/(m2·d),共可吸收CO2约为6.92×106 t C/a.不同季节海—气界面FCO2的年际变化凸显了人为因素的影响,近海富营养化加剧,三峡工程的运行都可能是造成东海冬季碳汇量减少、秋季碳源/汇格局转变的原因.

关 键 词:海—气界面CO2通量  季节变化  控制因素  长江冲淡水  东海

Advances of Seasonal Variations and Controlling Factors of the Air-Sea CO2 Flux in the East China Sea
Qu Baoxiao,Song Jinming,Yuan Huamao,Li Xuegang,Li Ning,Duan Liqin,Ma Qingxia,Chen Xin.Advances of Seasonal Variations and Controlling Factors of the Air-Sea CO2 Flux in the East China Sea[J].Advance in Earth Sciences,2013,28(7):783-793.
Authors:Qu Baoxiao  Song Jinming  Yuan Huamao  Li Xuegang  Li Ning  Duan Liqin  Ma Qingxia  Chen Xin
Institution:1.Key Laboratory of Ecology and Environment, Institute of Oceanography, Chinese Academy of Sciences,Qingdao 266071, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Spatial variations of theCO2 partial pressure (pCO2) in surface water, seasonal variations of the air seaCO2 exchange flux (FCO2), and major controlling factors of theCO2 transfer were reviewed based on the summary ofCO2 exchange in the East China Sea (ECS). Spatial distribution of pCO2 in the ECS underwent three different phases: the winter phase, the summer phase, and the transition phase (spring and autumn). The western coastal area acted asCO2 source on account of vertical convection during the winter phase, whereas the shelf region acted asCO2sink because of the phytoplankton activity. Estuary in the shallower shelf possessed highpCO2 for terrigenous input in the summer phase while the major shelf had low pCO2 under the comprehensive function of thermocline, Changjiang diluted water, and photosynthesis. During the transition phase in spring and autumn, the distribution ofpCO2 varied dramatically and got complex controlling factors. The winter, spring, and summer could absorb atmosphericCO2with the flux for (-6.68±6.93), (-4.94±0.80), (-3.67±1.09) mmol/(m2·d), respectively, whereas the autumn could releaseCO2with the flux for (2.64±7.06)mmol/(m2·d). The ECS serves as a carbon sink with the annual air-seaCO2 flux for -3.16 mmol/(m2·d),which equals to 6.92×106t C/a. Anthropogenic activities and the aggregative of eutrophication were the principal reason for the annual variation of CO2 flux probably.
Keywords:Air-sea CO2 flux  Seasonal variation  Controlling factor  Changjiang diluted water  The East China Sea
本文献已被 万方数据 等数据库收录!
点击此处可从《地球科学进展》浏览原始摘要信息
点击此处可从《地球科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号