首页 | 本学科首页   官方微博 | 高级检索  
     检索      

西北干旱区和黄土高原大气边界层特征对比及其对气候干湿变化的响应
引用本文:李岩瑛,张强,胡兴才,王荣基.西北干旱区和黄土高原大气边界层特征对比及其对气候干湿变化的响应[J].冰川冻土,2012,34(5):1047-1058.
作者姓名:李岩瑛  张强  胡兴才  王荣基
作者单位:1. 中国气象局兰州干旱气象研究所, 甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室, 甘肃 兰州 730020;2. 甘肃省武威市气象局, 甘肃 武威 733000;3. 民勤县气象站, 甘肃 民勤 733300
基金项目:国家自然科学基金重点项目“黄土高原陆面过程观测试验研究”,国家自然科学基金面上项目“西北干旱荒漠区大气边界层厚度特征及其形成机制研究”
摘    要:利用西北干旱区民勤、 黄土高原平凉和榆中3站2006-2009年1、 4、 7月和10月逐日08:00时和20:00时探空资料、 降水和日最高气温, 计算和对比分析了最大混合层厚度(ML)、 逆温层特征和垂直温湿场及其对干湿气候变化形成的影响. 结果表明: 最大混合层厚度与最高地气温差关系较为密切, 呈显著正相关, 干旱区民勤较密切其相关系数达0.92. 最大混合层厚度4月最深厚, 干旱区民勤高达2 871 m, 明显高于黄土区两站200~400 m左右, 平凉最为浅薄, 1月不足1 000 m; 但日降水量≥5 mm的降水发生时榆中较深厚, 高于其他两站300~400 m. 强降水发生前后干旱区湿度变化大, 发生时高低空湿度迅速增大, 而黄土高原变化湿度小, 榆中中低层增湿较明显. 干旱区近地层较干, 但有降水时中高层增湿较黄土高原显著. 干湿气候变化与最大混合层厚度、 逆温层的频数和强度、 近地面层的干湿程度关系密切, 混合层越深厚, 逆温层多而强, 近地层越干, 干旱加剧.

关 键 词:西北干旱区和黄土高原  最大混合层厚度  逆温层特征  垂直温湿场  干湿变化  
收稿时间:2012-01-25
修稿时间:2012-05-07

Atmosphere Boundary Layer Characteristics and Their Responses to Wetness Change over Arid Regions and Loess Plateau in Northwest China
LI Yan-ying,ZHANG Qiang,HU Xing-cai,WANG Rong-ji.Atmosphere Boundary Layer Characteristics and Their Responses to Wetness Change over Arid Regions and Loess Plateau in Northwest China[J].Journal of Glaciology and Geocryology,2012,34(5):1047-1058.
Authors:LI Yan-ying  ZHANG Qiang  HU Xing-cai  WANG Rong-ji
Institution:1. Key laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Adminstration/Institute of Arid Meteorology, China Meteorological Adminstration, Lanzhou Gansu 730020, China;2. Wuwei Meteorological Bureau in Gansu Province, Wuwei Gansu 733000, China;3. Minqin Meteorological Station, Minqin Gansu 733300, China
Abstract:Utilizing the daily sounding data observed at 08: 00 and 20:00, precipitations and maximum temperatures of Minqin in arid region, Yuzhong and Pingliang in Loess Plateau in January, April, July and October during 2006-2009, the maximum atmospheric mixed layer depth (hereafter ML), inversion layer characteristics, vertical T-Td field and their impacts on the wetness are calculated and analyzed. It is found that the maximum ML depth has a positive correlation with the difference value between the maximum ground temperature and the maximum air temperature, with a correlation coefficient up to 0.92 in Minqin. The maximum ML depth is deepest in April, reaching 2 871 m in Minqin, 200~400 m higher than that in the two stations in Loess Plateau; the maximum ML depth in Pingliang is the thinnest, less than 1 000 m in January; However, the maximum ML depth in Yuzhong is 300~400 m higher than that in the other two stations when daily precipitation ≥5 mm. Humidity changes greatly in the arid regions before and after a heavy precipitation. When daily precipitation ≥5 mm, humidity rapidly increases from high level to low level over arid regions, but it is less increases over Loess Plateau, with an obvious increase in Yuzhong from middle level to low level. Arid regions in Northwest China are drier near surface, but humidity from high level to middle level obviously increases as precipitation going on. Wetness change has a positive correlation with maximum ML depth, inversion's frequencies and strength, wetness characteristics near surface. The deeper maximum ML depth, more and stronger inversion and drier near surface are, the worse the drought is.
Keywords:arid regions and loess plateau in Northwest China  maximum ML depth  inversion layer characteristics  vertical T and T-Td fields  wetness change
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号