首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation and simulation of metallic spherules from lunar soils
Authors:PJ Blau  JI Goldstein
Institution:Department of Metallurgy and Materials Science, Lehigh University, Bethlehem, Pa. 18015, U.S.A.
Abstract:Metallic spherules selected from the Apollo 11, 12, 14, 15 and 16 sites were studied by optical techniques as well as the electron probe and scanning electron microscope. In addition, metallic spherules of similar composition were produced experimentally. The structure of the metallic lunar spherules indicates an origin by solidification of molten globules of metal. The experimentally produced spherules have external morphologies, metallographic structures and solidification rates (7 × 102 to 106 ° C/sec) similar to the lunar spherules which have rapidly solidified. The majority of the lunar spherules are, however, either more slowly cooled or have been reheated in place with the lunar fragmental rocks, glass or soil. The heavy meteorite bombardment of the highlands is strongly reflected by the evidence of reheating and/or slow cooling of a majority of Apollo 14 and 16 spherules.The metallic spherules are probably produced from both lunar and meteoritic sources. Impact processes cause localized shock melting of metallic (and non-metallic) constituents at metal-sulfide phase interfaces in surface rocks and in the meteoritic projectile. The major source of metallic spherules is the metal phase present in the lunar rocks and soil. The large variation in spherule bulk compositions is attributed to the different meteoritic projectiles bombarding the Moon, metal phases of differing compositions in the lunar soils and rocks and to the experimental results which indicate that high S, high P alloys form two immiscible liquids when melted.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号