首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical composition and origin of the earth's primitive mantle
Authors:Shen-Su Sun
Institution:CSIRO Division of Mineralogy, North Ryde, N.S.W. 2113, Australia
Abstract:An attempt has been made to estimate the chemical composition of the earth's primitive mantle by a critical evaluation of data derived from ultramafic mantle samples and partial melting model calculations for mafic and ultramafic magmas of various ages.Compatible (Al, Ca, Si, Mg, Fe) and moderately incompatible (Ti, Zr, heavy and middle rare earth) elements in basaltic magma sources have not changed significantly since the early Archaean (~3.5 Byr). Estimated abundances for refractory lithophile elements (such as Al, Ca, Ti, Zr, Y, Se, REE etc.) in the primitive mantle are about 2.0 times ordinary chondrites (~ 1.1 times Cl chondrites relative to Mg). Highly incompatible volatile elements (K, Rb, Cs, Tl, Pb etc.) are depleted in the mantle throughout geological time. Abundances of Fe, Ni and Co are obtained on the basis of values for ultramafic nodules and model calculations using komatiites of various ages. The results show little (? 20%?) dispersion and there is no obvious secular variation since 3.5 Byr. Noble metals show similar effects. These data permit constraints to be placed on the timing of core formation.The estimated elemental abundances for the primitive mantle are normalized to Cl chondrites relative to Mg and plotted against the solar condensation temperature at 10?4 atm. Above 700 K there are two parallel trends which are defined by lithophile elements (Al, Ca, REE, Ti, Mg, Si, Cr, Mn, Na, K, Rb, F, Zn etc.) and siderophile elements (W, Ni, Co, P, As, Ag, Sb and Ge) respectively. The depletion factor for the siderophile trend relative to the lithophile trend is about 0.085. Within each trend there is a continuous depletion towards lower temperature. A third trend is defined by noble metals (Ir, Os, Re, Pd, Pt and Au) with a depletion factor of about 0.003 relative to Cl chondrites. These trends are interpreted in terms of core-mantle differentiation and volatility-controlled processes operating before and during earth accretion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号