首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust
Authors:Qiang Wang  Derek A Wyman  Ping Jian  Chaofeng Li  Jinlong Ma
Institution:a Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
b School of Geosciences, Division of Geology and Geophysics, The University of Sydney, NSW 2006, Australia
c Chinese Academy of Geological Science, 26 Beiwanzhuang Road, Beijing 100037, PR China
d Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, PR China
e Academy of Geological Survey of Anhui Province, Ningguo Road 19, Hefei 230001, PR China
Abstract:To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号