首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion of Au, Pd, Re, and P in FeNi alloys at High Pressure
Authors:Heather C Watson  E Bruce Watson
Institution:a Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA
b Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, USA
Abstract:Multi-anvil and piston cylinder experiments were performed to determine the effect of both pressure and temperature on the diffusivities of several siderophile elements in a Fe90Ni10 core-analog alloy. Activation energies were calculated to be between 244 and 257 kJ/mol for Re, Pd, and Au at 10 GPa, and 264 kJ/mol for P at 1 GPa. It was found that pressure has a marked negative effect on the diffusivities of Au, Re, and Pd, and activation volumes for these elements were calculated to be between 3 and 6 cm3/mol at 10 GPa. The effect of both temperature and pressure on P diffusion is noticeably less, and the absolute diffusivity of phosphorus is consistently higher than that of the other elements. It is inferred that the reason for this difference is because P is diffusing via an interstitial mechanism as opposed to Re, Pd, and Au which occupy regular lattice sites in the crystal. The effect of pressure and temperature together with depth in the Earth suggests that these elements may continue to exhibit different behavior at more extreme conditions. The significance of these new results lies in the ability to place constraints on many time-dependent processes that pertain to the formation and evolution of planetary cores, as well as the formation and cooling histories of other metal-rich bodies in the solar system, such as meteorites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号