首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Arsenic in coal: a review
Institution:Institute of Geology, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167023 Syktyvkar, Morozova st., 100, ap. 49, Russia
Abstract:The review presented covers: (a) historical introduction; (b) some analytical comments; (c) some peculiarities of the As geochemistry in environment; (d) an estimation of coal Clarke value of As; (e) some coals enriched in As; (f) mode of As occurrence in coal; (g) factors influencing the As distribution in coal matter and coal bed; (h) genetic topics; (i) some topics related to environmental impact of As by the coal combustion.The World average As content in coals (coal Clarke of As) for the bituminous coals and lignites are, respectively, 9.0±0.8 and 7.4±1.4 ppm. On an ash basis, these contents are higher: 50±5 and 49±8 ppm, respectively. Therefore, As is a very coalphile element: it has strong affinity to coal matter — organic and (or) inorganic but obligatory authigenic. The coalphile affinity of As is like that for Ge or S.There is strong regional variability of As distribution due to geologic variability of the individual coal basins. For example, bituminous coals in Eastern Germany, Czech Republic and SE China are enriched in As, whereas the coals in South Africa or Australia are very depleted compared to coal Clarke of As. In general, some relationship exists between As content and its mode of occurrence in coals. Typically, at high As content, sulphide sites dominate (pyrite and other more rare sulphides), whereas at low As content, Asorg dominates, both being authigenic. A contribution of the terrigenic As (in silicates) is usually minor and of the biogenic Asbio (derived from coal-forming plants) is poorly known.Both organic and inorganic As can exist not only as chemically bound form but also in the sorbed (acid leacheable) arsenate form. With increasing coal rank, sorbed exchangeable arsenate content decreases, with a minimum in the coking coals (German data: the Ruhr coals).Relations of As content in coal to ash yield (or its partitioning in sink–float fractions) and to coal petrographic composition are usually complicated. In most cases, these relations are controlled by main site (form) of As — Aspyr or Asorg. If Aspyr dominates, an As accumulation in heavy fractions (or in high-ash coals) is observed, and if Asorg dominates, it is enriched in medium-density fractions (or low- and medium-ash coals). Arsenic is in part accumulated in the inertinite vs. vitrinite (Asorg ?).There are four genetic types of As accumulation on coal: two epigenetic and two syngenetic: (1) Chinese type—hydrothermal As enrichment, sometimes similar to known Carlin type of As-bearing telethermal gold deposits; (2) Dakota type—hypergene enrichment from ground waters draining As-bearing tufa host rocks; (3) Bulgarian type—As enrichment resulting from As-bearing waters entered coal-forming peat bogs from sulphide deposit aureoles; (4) Turkish type—volcanic input of As in coal-forming peat bog as exhalations, brines and volcanic ash.During coal combustion at power plants, most of the initial As in coal volatilizes into the gaseous phase. At the widely used combustion of pulverized coal, most of Asorg, Aspyr and “shielded” As-bearing micromineral phases escape into gaseous and particulate phase and only minor part of Asclay remains in bottom ash. The dominant fraction of escaping As is in fly ash. Because 97–99% of the fly ash is collected by electrostatic precipitators, the atmospheric emission of As (solid phase and gaseous) is usually assumed as rather minor (10–30% from initial As in coal). However, fly ash disposal creates some difficult environmental problems because it is potentially toxic in natural waters and soils. The As leaching rate from ash disposal is greatly controlled by the ash chemistry. In natural environment, As can be readily leached from acid (SiO2-rich) bituminous coal ashes but can be very difficult from alkali (CaO-rich) lignite ashes.If the Aspyr form dominates, conventional coal cleaning may be an efficient tool for the removing As from coal. However, organic-bound or micromineral arsenic (“shielded” grains of As-bearing sulphides) are not removed by this procedure.Some considerations show that “toxicity threshold” of As content in coal (permissible concentration for industrial utility) may be in the range 100–300 ppm As. However, for different coals (with different proportions of As-forms), and for different combustion procedures, this “threshold” varies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号