首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The unequilibrated enstatite chondrites
Authors:Michael K Weisberg  Makoto Kimura
Institution:1. Department of Physical Sciences, Kingsborough College and Graduate School of the City University of New York, Brooklyn, NY 11235, United States;2. Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024, United States;3. Faculty of Science, Ibaraki University, Mito 310-8512, Japan
Abstract:The enstatite chondrites formed under highly reducing (and/or sulfidizing) conditions as indicated by their mineral assemblages and compositions, which are sharply different from those of other chondrite groups. Enstatite is the major silicate mineral. Kamacite is Si-bearing and the enstatite chondrites contain a wide variety of monosulfide minerals that are not present in other chondrite groups. The unequilibrated enstatite chondrites are comprised of two groups (EH3 and EL3) and one anomalous member (LEW 87223), which can be distinguished by differences in their mineral assemblages and compositions. EH3 chondrites have >1.8 wt.% Si in their kamacite and contain the monosulfide niningerite (MgS), whereas EL3 chondrites have less than 1.4 wt.% Si in their kamacite and contain the monosulfide alabandite (MnS). The distinct mineralogies, compositions and textures of E3 chondrites make comparisons with ordinary chondrites (OCs) and carbonaceous chondrites (CCs) difficult, however, a range of recrystallization features in the E3s are observed, and some may be as primitive as type 3.1 OCs and CCs. Others, especially the EL3 chondrites, may have been considerably modified by impact processes and their primary textures disturbed. The chondrules in E3 chondrites, although texturally similar to type I pyroxene-rich chondrules, are sharply different from chondrules in other chondrite groups in containing Si-bearing metal, Ca- and Mg–Mn-rich sulfides and silica. This indicates formation in a reduced nebular environment separate from chondrules in other chondrites and possibly different precursor materials. Additionally the oxygen isotope compositions of E3 chondrules indicate formation from a unique oxygen reservoir. Although the abundance, size distribution, and secondary alteration minerals are not always identical, CAIs in E3 chondrites generally have textures, mineral assemblages and compositions similar to those in other groups. These observations indicates that CAIs in O, C and E chondrites all formed in the reservoir under similar conditions, and were redistributed to the different chondrite accretion zones, where the secondary alteration took place. Thus, chondrule formation was a local process for each particular chondrite group, but all CAIs may have formed in the similar nebular environment. Lack of evidence of water (hydrous minerals), and oxygen isotope compositions similar to Earth and Moon suggest formation of the E chondrites in the inner solar system and make them prime candidates as building blocks for the inner planets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号