首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of LPM permafrost distribution in NE Asia reconstructed and downscaled from GCM simulations
Authors:Kazuyuki Saito  Sergei Marchenko  Vladimir Romanovsky  Amy Hendricks  Nancy Bigelow  Kenji Yoshikawa  John Walsh
Institution:1. Japan Agency for Marine‐Earth Science and Technology, , Yokohama City, Kanagawa, 236‐0001 Japan;2. International Arctic Research Center, University of Alaska Fairbanks, , 99775‐7340 Alaska, USA;3. Geophysical Institute, University of Alaska Fairbanks, , 99775‐7320 Alaska, USA;4. Earth Cryosphere Institute, , Tyumen, Russian Federation;5. Alaska Quaternary Center, University of Alaska Fairbanks, , 99775‐5940 Alaska, USA;6. Water and Environmental Research Center, University of Alaska Fairbanks, , 99775‐5860 Alaska, USA
Abstract:A high‐resolution map of potential frozen ground distribution in NE Asia (90–150°E, 25–60°N) at the period of the Last Permafrost Maximum (LPM, c. 21 000 years ago) was dually reconstructed by means of a statistical classification using air freezing and thawing indices and a topographical downscaling using a digital relief model (ETOPO1). Background LPM climate data were derived from global climate model simulations of the Paleoclimate Model Intercomparison Project, Phase II (PMIP2). The reconstructed LPM map shows the southward shift of the southern limit of climate‐driven permafrost by 400–1500 km, with the greatest advance in the western sector (90–110°E), encompassing an area from central Siberia to most of the Altai area. The advance of environmentally conditional permafrost and seasonally frozen ground was greatest in the eastern sector (110–150°E), with an average shift of about 450 km. The descent of the lower limit of LPM alpine permafrost was in the range of 400–800 m. A comparison of the reconstructed map with published literature shows that this method, simplistically constructed yet effectively recognizing seasonality, continentality and topography, captures local features better than more elaborate methods. The sensitivity examination of a constant atmospheric lapse rate shows that altitudes of 2000–5000 m a.s.l. were most sensitive, though with only a limited effect on overall LPM distribution.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号