首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于指标信度测度赋权的岩溶隧道水害危险性集对云评价研究
引用本文:蒋英礼,崔杰,王景梅,张彦龙.基于指标信度测度赋权的岩溶隧道水害危险性集对云评价研究[J].中国岩溶,2022,41(2):276-286.
作者姓名:蒋英礼  崔杰  王景梅  张彦龙
作者单位:1.广东交通职业技术学院,广东 广州 510650
基金项目:国家自然科学基金资助项目(51578167);广东省普通高校特色创新项目(2021KTSCX221);广州市基础研究计划基础与应用基础研究项目(2022-1720)
摘    要:隧道水害危险性评价是一个非线性复杂的不确定系统问题。首先,针对其评价指标参数具有不确定性、模糊性和随机性等特点,在充分考虑岩溶隧道水害危险性评价指标关联性的基础上,提出了基于Jousselme距离的指标信度测度动态赋权理论,实现不同的实例、不同的指标实测值对整个系统的动态赋权,降低实际工作中由于指标实测值误差或错误导致评价结果偏差的风险;其次,运用云理论优化集对联系度,与所得权重加权得出系统综合云联系度,并与等级评价区间期望加权平均得到危险值,同时生成对应的等级云图判定隧道水害危险性等级,进而判定岩溶隧道水害危险状态,实现水害危险等级判定的可视化;再次,基于大气降水为岩溶隧道水害主要来源的视角,选取年均降水量、入渗系数、汇水面积、渗透系数和单位涌水量5项指标作为集对云评价指标,并以6条典型岩溶隧道为样本数据进行模型检验,发现评价结果与其他方法的评价结果相吻合,证明了该模型的可靠性和有效性。最后,将模型应用于京珠高速公路媲双坳岩溶隧道水害事故中,评价结果与实际情况相符,采取与评价等级相对应的处治措施,取得了良好的水害治理效果,表明该模型具有工程实用价值,评价流程可操作性强,为岩溶隧道水害的预测和防治提供参考。 

关 键 词:指标信度测度    隧道水害    危险性评价    集对云
收稿时间:2021-04-05

Risk assessment of tunnel flood based on the weighting of index reliability measurement and set pair cloud
Institution:1.Guangdong Communication Polytechnic, Guangzhou, Guangdong 510650, China2.Guangzhou University, Guangzhou, Guangdong 510006, China3.Guangdong Hualu Transport Technology Co., Ltd., Guangzhou, Guangdong 510420, China
Abstract:Tunnel flood assessment is a nonlinear and complex system with uncertainty. Scientific and reasonable flood grading evaluation and corresponding prevention and treatment measures have become the primary problem to be solved in the construction and operation of karst tunnels. Firstly, aimed at the uncertainty, fuzziness and randomness of evaluation index parameters, the correlation between indexes by the multi-evidence correlation coefficient of Jousselme distance are analyzed in this study. The dynamic weighting theory of index reliability measurement based on Jousselme distance is also put forward. With the weighting method, the accurate weight of each index can be obtained according to the reliability classification of indexes. Thus, the dynamic weighting of the whole system by the measured values of different cases and indexes is realized, and the risk of deviation of evaluation results caused by the error or error of measured values of indexes in practice is reduced; thus, the robustness of the evaluation model will be enhanced.Secondly, based on the theory and idea of uncertain artificial intelligence, and with the combination of the eigenvalues in cloud theory and the set pair theory, the cloud theory to optimize the set pair connection degree is used to obtain risk assessment indexes of karst tunnel flood. The index cloud connection degree and index reliability measurement are weighted by the dynamic weighting method to obtain the degree of system comprehensive cloud connection, and the risk value is obtained by the expected weighted average of the grading evaluation interval. At the same time, the corresponding grade cloud map is generated to determine the flood grade of karst tunnel. Accordingly, the flood state of karst tunnel is determined, and the visualization of flood grade determination is realized.Thirdly, the karst tunnel flood occurs in a complex system composed of both the tunnel and the external environment; therefore, its risk assessment is affected by many factors, and the evaluation index system should be established in a comprehensive and concise way. From the perspective that atmospheric precipitation is the main source of flood in karst tunnel, five correlation indexes-annual precipitation, infiltration coefficient, catchment area, permeability coefficient and unit water inflow-are constructed as evaluation indexes of set pair cloud of karst tunnel flood in this study. On this basis, the grading standard of each evaluation index and its corresponding cloud map of flood grade are established. In order to verify the accuracy and effectiveness of the set pair cloud model and its evaluation index system constructed based on the weighting of the index reliability measurement, the data of six typical karst tunnel samples for the model test is collected. Consistency between evaluation results and those of other methods proves the reliability and effectiveness of the model proposed in this study. Finally, this model has been applied to the flood accident of Pishuangao karst tunnel of Beijing-Zhuhai expressway, the results of which are also consistent with the actual situation of the project. At the same time, the treatment measures corresponding to Grade I have achieved effective flood control. The result shows that the set pair cloud model constructed in this study based on the weighting of the index reliability measurement takes into account the correlation between the evaluation indexes, the uncertainty of the evaluation system and the ambiguity of the evaluation index grade. The model can improve the accuracy of flood risk assessment in karst tunnels, and the evaluation process of this model is highly maneuverable. In fact, this model can provide a new method for rapid and effective analysis of flood in karst tunnels, and can also provide reference and guidance for the prediction and prevention of flood in karst tunnels in China. 
Keywords:
点击此处可从《中国岩溶》浏览原始摘要信息
点击此处可从《中国岩溶》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号