首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur
Authors:Judith M Stribling  Jeffrey C Cornwell
Institution:1. Department of Biological Sciences, Salisbury State University, 1101 Camden Avenue, 21801, Salisbury, Maryland
2. Horn Point Environmental Laboratory Center for Environmental and Estuarine Studies, University of Maryland System, P.O. Box 775, 21613, Cambridge, Maryland
Abstract:The use of multiple stable isotopes in the study of trophic relationships in temperate estuaries has usually been limited to euhaline systems, in which phytoplankton, benthic microalgae, andSpartina alterniflora are major sources of organic matter for consumers. Within large estuaries such as Chesapeake Bay, however, many species of consumers are found in the upper mesohaline to oligohaline portions. These lower salinity wetlands have a greater abundance of macrophytes that use C3 photosynthesis to fix carbon, in addition toS. alterniflora, which fixes carbon via the C4 photosynthetic pathway. In a broad survey of the biota and sediments of a brackish tidal creek tributary to Chesapeake Bay, combined δ13C and δ34S measurements disclosed a balanced contribution to secondary production from phytoplankton, C3 macrophytes,Spartina sp., and benthic microalgae. Surface sediment δ13C suggested that the organic matter from C3 plants was derived both from allochthonous sources (terrestrial runoff) and from autochthonous production (marsh macrophytes). Unlike most estuarine systems studied to date, which are dominated by algae (phytoplankton and benthic microalgae) and C4 macrophytes, C3 plants are of greater importance in the diets of consumers in this low-salinity creek system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号