首页 | 本学科首页   官方微博 | 高级检索  
     检索      

球粒状和棒状纳米赤铁矿光电化学特性研究
引用本文:孙曼仪,任桂平,鲁安怀,李艳,丁竑瑞.球粒状和棒状纳米赤铁矿光电化学特性研究[J].岩石矿物学杂志,2017,36(6):817-824.
作者姓名:孙曼仪  任桂平  鲁安怀  李艳  丁竑瑞
作者单位:造山带与地壳演化教育部重点实验室, 矿物环境功能北京市重点实验室, 北京大学 地球与空间科学学院, 北京 100871,造山带与地壳演化教育部重点实验室, 矿物环境功能北京市重点实验室, 北京大学 地球与空间科学学院, 北京 100871,造山带与地壳演化教育部重点实验室, 矿物环境功能北京市重点实验室, 北京大学 地球与空间科学学院, 北京 100871,造山带与地壳演化教育部重点实验室, 矿物环境功能北京市重点实验室, 北京大学 地球与空间科学学院, 北京 100871,造山带与地壳演化教育部重点实验室, 矿物环境功能北京市重点实验室, 北京大学 地球与空间科学学院, 北京 100871
基金项目:国家重点基础研究发展计划"973"计划(2014CB846001);国家自然科学基金(41230103,41522201);博士后基金(2014M550552)
摘    要:本文以乙二醇为诱导剂通过电化学沉积法成功合成了球粒状及棒状纳米赤铁矿。X射线衍射光谱(XRD)和Raman光谱结果表明,球粒状赤铁矿粒径20±5 nm;棒状赤铁矿截面直径约20 nm,长90±10 nm;二者物相皆为单一均匀的赤铁矿。紫外-可见吸收光谱显示两种赤铁矿在300~550 nm范围内均有较好吸收,Tauc方程计算球粒状和棒状赤铁矿禁带宽度分别为2.00 e V和1.99 e V。Mott-Schottky拟合结果表明1 M KOH溶液体系中,棒状赤铁矿载流子浓度为1.95×1021cm-3,高于球粒状赤铁矿(3.16×1020cm-3)。进一步的光电化学实验表明:0.6 V(vs.Ag/Ag Cl)电势下棒状赤铁矿光照下电流密度较暗电流提升550%,球粒状赤铁矿电流密度提升77%。研究证实,赤铁矿形貌对其半导体特性及光电化学特性有影响,且棒状赤铁矿电极表现出更好的可见光响应特性,具有更佳的光电催化潜力。

关 键 词:赤铁矿  形貌  光电化学  半导体矿物
收稿时间:2017/8/22 0:00:00
修稿时间:2017/10/16 0:00:00

Photoelectrochemical performance of nanosphere and nanorod hematite
SUN Man-yi,REN Gui-ping,LU An-huai,LI Yan and DING Hong-rui.Photoelectrochemical performance of nanosphere and nanorod hematite[J].Acta Petrologica Et Mineralogica,2017,36(6):817-824.
Authors:SUN Man-yi  REN Gui-ping  LU An-huai  LI Yan and DING Hong-rui
Institution:Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China,Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China and Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract:In this study, nanosphere and nanorod hematite were synthesized through electrode position, and both were confirmed as the pure and sole phase of hematite by XRD and Raman. Morphological observations by SEM of electrodes showed that the diameter of nanosphere hematite particles was 20±5 nm, and nanorod hematite particles synthesized in eletrolyte containing ethylene glycol had the length of 90±10 nm and the diameter of about 20 nm. They both exhibited significant absorption in the range of 300~550 nm in the UV-Vis spectroscopy, and the calculated bandgap width for nanosphere and nanorod hematite was 2.00 eV and 1.99 eV, respectively. The calculated carrier density for nanospheres was 3.16×1020 cm-3 and that for nanorods was 1.95×1021 cm-3, fitted through Mott-Schottky curves measured in 1 M KOH solution. The results of photoelectrochemical experiments indicated that the current density of nanorods was lifted up to 5.5 times with illumination compared with that under dark condition under the potential of 0.6V (vs. Ag/AgCl). Nevertheless, the fact that the current density of nanospheres rose by just about 77% indicated that, although both nanosphere and nanorod hematite exhibited photoelectric response, the nanorods performed a more remarkable capacity in photoelectrocatalysis.
Keywords:hematite  morphology  photoelectrochemistry  semiconductive mineral
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石矿物学杂志》浏览原始摘要信息
点击此处可从《岩石矿物学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号