首页 | 本学科首页   官方微博 | 高级检索  
     检索      

eSQG方法在南海垂向流速诊断中的应用研究
引用本文:黄家辉,谢玲玲,李强,李敏.eSQG方法在南海垂向流速诊断中的应用研究[J].海洋学报,2022,44(12):55-69.
作者姓名:黄家辉  谢玲玲  李强  李敏
作者单位:1.广东海洋大学 海洋与气象学院 近海海洋变化与灾害预警实验室,广东 湛江 524088
基金项目:国家自然科学基金(42276019,41776034);广东省普通高校创新团队项目(2019KCXTF021);广东省高冲一流专项(080503032101,231420003)。
摘    要:本文利用OFES模式0.1°×0.1°高分辨率温盐、流速和海面高度(SSH)数据,分析eSQG方法在南海垂向流速诊断中的适用性和南海垂向流速的时空变化特征。结果表明,基于SSH和eSQG的诊断垂向流速ωeSQG与OFES模拟“真值”垂向流速ωOFES整体量级基本相当,为O(10?5 m/s),空间上呈现北强南弱。深海盆(水深大于1 000 m)ωeSQG与ωOFES的水平空间分布的相关系数rs在次表层150 m左右达到最大,高于南海全海域的空间相关系数,表明eSQG在远离边界的深水区更有效。季节上,ωeSQG总体夏强冬弱,与ωOFES的相关系数rs冬季大、夏季小,表明eSQG更适用于冬季南海垂向流速的诊断。eSQG诊断垂向流速在台湾西南部和越南以东适用性更高,与ωOFES的时间相关系数rt超过0.6;海盆南部和西北部陆架区诊断效果较差,时间相关系数rt多小于0.2。同一区域ωeSQG和ωOFES空间相关系数存在18~55 d的周期变化。分析显示,海面高度与海面密度同相位分布时,ωeSQG与“真值”ωOFES更接近。时间分辨率对eSQG诊断效果几乎无影响,空间分辨率降低到0.25°时rs整体增大,说明eSQG在中尺度诊断效果更好。

关 键 词:垂向流速    eSQG    时空变化    南海    OFES
收稿时间:2022-05-03

Application of eSQG method in vertical velocity diagnosis in the South China Sea
Institution:1.Laboratory of Coastal Ocean Variation and Disaster Prediction, College of Oceanology and Meteorology, Guangdong Ocean University, Zhangjiang 524088, China2.Guangdong Key Laboratory of Climate, Resource and Environment in Continental Shelf Sea and Deep Ocean, Zhanjiang 524088, China3.Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
Abstract:Using 0.1°×0.1° high-resolution temperature, salinity, velocity and sea surface height (SSH) data from the ocean general circulation model for the earth simulator (OFES) model, this study analyzes the capability and applicability of the eSQG (effective Surface Quasi-Geostrophy) method in vertical velocity diagnosis in the South China Sea (SCS), as well as the spatiotemporal variation of vertical velocities. The diagnosed vertical velocities ωeSQG from SSH with the eSQG method are of the same order of 10?5 m/s as the “true” vertical velocities ωOFES from the OFES model. ωeSQG shows spatial variations with higher values in northern basin. The correlation coefficients of the horizontal distribution of ωeSQG and ωOFES (rs) are greater in deep basin than that in the whole SCS, suggesting that the eSQG method is more efficient in vertical velocity diagnosis in deep water far from boundaries. Vertically, the correlation coefficient has maximum values occurring in the subsurface layer at about 150 m. ωeSQG is stronger in summer and rs show seasonal variation with higher values in winter, indicating more efficient in eSQG diagnosis in winter. ωeSQG is reliable in the regions southwest of Taiwan and east of Vietnam, where the temporal correlation coefficients of ωeSQG and ωOFES (rt) exceed 0.6, while ωeSQG is poorly correlated to ωOFES in the shelf regions in the southern and northwestern SCS with rt mostly under 0.2. rs in the same region is varying at periods of about 18?55 d. ωeSQG performs better as the distributions of the SSH and the sea surface density are in same phase. ωeSQG varies little as the temporal resolution of SSH varies, while rs increases as spatial resolution reduced to 0.25° in mesoscales.
Keywords:
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号