首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections
Authors:Pedro C Vicente  António F de O Falcão  Luís MC Gato  Paulo AP Justino
Institution:1. IDMEC, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisboa, Portugal;2. Laboratório Nacional de Energia e Geologia, 1649-038 Lisboa, Portugal;1. Center for Ocean Energy Research, Maynooth University Maynooth, Co. Kildare, Ireland;2. Tecnalia Research and Innovation Parque Tecnologico de Bizkaia, Edificio 700 48160, Derio, Bizkaia, Spain;3. Department of Mechanical Engineering University of the Basque Country (EHU/UPV), Spain;4. Basque Centre of Applied Mathematics (BCAM), Bilbao, Spain
Abstract:If point absorbers are employed in the extensive exploitation of the offshore wave energy resource, they should be deployed in arrays, the distance between the elements in the array being possibly tens of meters. In such cases, it may be more convenient that the array is spread moored to the sea bottom through only some of its elements, located in the periphery, while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is to pull the three floaters towards each other and keep the inter-body mooring lines under tension. The power take-off system (PTO) is a linear damper activated by the buoy heaving motion. The whole system–buoys, moorings and power take-off systems–is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating buoys in array is accounted for. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral triangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and for different mooring parameters and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号