首页 | 本学科首页   官方微博 | 高级检索  
     检索      

一个区域海洋——海冰——大气耦合模式中的北极气候偏差:年结果检验
作者姓名:LIU  Xiying
作者单位:College of Meteorology and Oceanography, People's Liberation Army University of Science and Technology, Nanjing 211101, China
基金项目:The National Natural Science Foundation of China under contract No. 41276190.
摘    要:The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model (WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCE- ROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmo- spheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice ex- tents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beau- fort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is determined to a l

关 键 词:极地气候  海冰  偏差  海洋  北极  验证  空气温度  大气成分
收稿时间:1/5/2013 12:00:00 AM
修稿时间:2014/5/20 0:00:00

Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation
LIU Xiying.Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation[J].Acta Oceanologica Sinica,2014,33(9):56-67.
Authors:LIU Xiying
Institution:College of Meteorology and Oceanography, People's Liberation Army University of Science and Technology, Nanjing 211101, China
Abstract:The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model (WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCEROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmospheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice extents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beaufort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is determined to a large extent by its components, the WRF/PCE and the ROMS-CICE.
Keywords:Arctic climate  coupled model  numerical simulation
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号