首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MM5 Simulations of the China Regional Climate During the LGM.I: In uence of CO2 and Earth Orbit Change
Authors:LIU Yu
Institution:Chinese Academy of Meteorological Sciences, Beijing 100081;Nanjing University of Information Science and Technology, Nanjing 210044;Chinese Academy of Meteorological Sciences, Beijing 100081;Chinese Academy of Meteorological Sciences, Beijing 100081
Abstract:Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative Last Glacial Maximum (LGM) climate response to different mechanisms over China. Model simulations of the present day (PD) climate and the LGM climate change are in good agreement with the observation data and geological records, especially in the simulation of precipitation change. Under the PD and LGM climate,changes of earth orbital parameters have a small influence on the annual mean temperature over China.However, the magnitude of the effect shows a seasonal pattern, with a significant response in winter. Thus,this influence cannot be neglected. During the LGM, CO2 concentration reached its lowest point to 200 ppmv. This results in a temperature decrease over China. The influences of CO2 concentration on climate show seasonal and regional patterns as well, with a signi cant influence in winter. On the contrary, CO2 concentration has less impact in summer season. In some cases, temperature even increases with decreasing in CO2 concentration. This temperature increase is the outcome of decrease in cloud amount; hence increase the solar radiation that reached the earth's surface. This result suggests that cloud amount plays a very important role in climate change and could direct the response patterns of some climate variables such as temperature during certain periods and over certain regions. In the Tibetan Plateau, the temperature responses to changes of the above two factors are generally weaker than those in other regions because the cloud amount in this area is generally more than in the other areas. Relative to the current climate, changes in orbital parameters have less impact on the LGM climate than changes in CO2 concentration. However,both factors have rather less contributions to the climate change in the LGM. About 3%-10% changes in the annual mean temperature are contributed by CO2.
Keywords:CO2  earth orbital parameters  Last Glacial Maximum (LGM)  China climate
点击此处可从《Acta Meteorologica Sinica》浏览原始摘要信息
点击此处可从《Acta Meteorologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号