首页 | 本学科首页   官方微博 | 高级检索  
     检索      

未来百年夏季青藏高原臭氧变化趋势及可能机制
引用本文:苏昱丞,郭栋,郭胜利,施春华,刘仁强,刘煜,宋刘明,徐建军.未来百年夏季青藏高原臭氧变化趋势及可能机制[J].大气科学学报,2016,39(3):309-317.
作者姓名:苏昱丞  郭栋  郭胜利  施春华  刘仁强  刘煜  宋刘明  徐建军
作者单位:南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;空间天气研究所, 江苏 南京 210044;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;空间天气研究所, 江苏 南京 210044;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;中国气象科学研究院, 北京 100081;浙江省嘉兴市气象局, 浙江 嘉兴 314050;南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
基金项目:国家重点基础研究发展计划(973计划)项目(2010CB428605);国家自然科学基金资助项目(41305039;91537213;41375047;41375092;41475140;41575057;41205065);江苏省高校自然科学研究计划项目(13KJB170009);江苏高校优势学科建设工程项目(PAPD)
摘    要:利用全大气气候通用模式(WACCM3)对政府间气候变化专门委员会排放情景特别报告中2001年到2099年A1B、A2、B1三种排放情景进行了模拟,分析了三种排放情景下青藏高原地区未来百年臭氧总量在夏季(6—8月)的变化趋势及引起该变化的可能机制。结果表明:在三种排放情景下未来百年夏季高原区臭氧总量均呈现增长趋势,其中A2情景下臭氧增长最快,B1情景下增长最慢,但相对于同纬度其他地区,高原区的臭氧总量增长较慢,即高原区臭氧谷加深。高原区高空污染物的减少以及局域Hadley环流的减弱是未来高原区臭氧总量增加的原因;而南亚高压的增强,以及与之相对应的辐散增强则可能是高原区臭氧谷继续加深的原因。

关 键 词:臭氧  青藏高原  未来百年  趋势  机制
收稿时间:2014/9/25 0:00:00
修稿时间:2014/12/5 0:00:00

Ozone trends over the Tibetan Plateau in the next 100 years and their possible mechanism
SU Yuchen,GUO Dong,GUO Shengli,SHI Chunhu,LIU Renqiang,LIU Yu,SONG Liuming and XU Jianjun.Ozone trends over the Tibetan Plateau in the next 100 years and their possible mechanism[J].大气科学学报,2016,39(3):309-317.
Authors:SU Yuchen  GUO Dong  GUO Shengli  SHI Chunhu  LIU Renqiang  LIU Yu  SONG Liuming and XU Jianjun
Institution:Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Institute of Space Weather, Nanjing 210044, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Institute of Space Weather, Nanjing 210044, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Chinese Academy of Meteorological Sciences, Beijing 100081, China;Jiaxing Meteorological Bureau, Jiaxing 314050, China;Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:Ozone research has been a hot spot in research on climate change because stratospheric ozone can directly affect the earth system and climate change by absorbing solar ultraviolet radiation.The ozone valley over the Tibetan Plateau in summer has a significant impact on local climate.Against the background of energy conservation and emissions reduction,studying the characteristics and possible mechanism of ozone change in the future can provide theoretical support for the future development of relevant policies.To understand future ozone trends over the Tibetan Plateau in summer and their possible mechanism,version 3 of the Whole Atmosphere Community Climate Model(WACCM3),with a horizontal resolution of 1.9°×2.5°(longitude×latitude)and vertical resolution of 1.1 km in the upper troposphere and lower stratosphere region,was used to simulate three emissions scenarios of the Special Report of the Intergovernmental Panel on Climate Change(IPCC).The three emissions scenarios were A1B("which] describes a future world of very rapid economic growth,global population that peaks in mid-century and declines thereafter,and the rapid introduction of new and more efficient technologies.Major underlying themes are convergence among regions,capacity building,and increased cultural and social interactions,with a substantial reduction in regional differences in per capita income.Direction of technological change in the energy system is a balance across all sources."),A2("which] describes a very heterogeneous world.The underlying theme is self-reliance and preservation of local identities.Fertility patterns across regions converge very slowly,which results in continuously increasing global population.Economic development is primarily regionally oriented and per capita economic growth and technological change are more fragmented and slower than in other storylines."),and B1("which] describes a convergent world with the same global population that peaks in mid-century and declines thereafter,as in the A1 storyline,but with rapid changes in economic structures toward a service and information economy,with reductions in material intensity,and the introduction of clean and resource-efficient technologies.The emphasis is on global solutions to economic,social,and environmental sustainability,including improved equity,but without additional climate initiatives.").The simulation results showed that,under A1B,A2 and B1,2001-2099 global total ozone has an increasing trend,which means ozone recovery.The increasing trend of total ozone under A2 is strongest,and the increasing trend of total ozone under B1 is weakest.In the three emissions scenarios,total ozone over the Tibetan Plateau area(26-38°N,75-105°E) shows an increasing trend,but the speed of recovery is slower than that of the global total ozone;that is,the ozone valley over the Tibetan Plateau will significantly deepen.Total chlorine content over the Tibetan Plateau in summer and the chloride concentration at 70 hPa near the center of the ozone valley over the Tibetan Plateau in summer showed decreasing trends for the next 100 years.Meanwhile,the ascending branch of local Hadley Circulation over the Tibetan Plateau in summer has a decreasing trend.These two factors lead to an increase in total ozone over the Tibetan Plateau in summer in the future.On the other hand,the intensity of the South Asia high in the future will enhance,the divergence near the South Asian high will strengthen,and the ozone flux divergence near the South Asian high will strengthen too,which may be the reason for the deepening of the ozone valley over the Tibetan Plateau.In summary,in the period 2001-2099,based on the A1B,A2 and B1 emissions scenarios,total ozone is expected to increase over the Tibetan Plateau,caused by pollutants reduction and a weakening of local Hadley Circulation;the deepening of the ozone valley over the Tibetan Plateau may be controlled by the enhancement of the South Asia high.
Keywords:ozone  Tibetan Plateau  future projection  trends  mechanism
本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学学报》浏览原始摘要信息
点击此处可从《大气科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号