首页 | 本学科首页   官方微博 | 高级检索  
     检索      

预估临边探测大气温度和水汽廓线的反演精度
引用本文:宗雪梅.预估临边探测大气温度和水汽廓线的反演精度[J].应用气象学报,2020,31(4):471-481.
作者姓名:宗雪梅
作者单位:中国科学院大气物理研究所, 北京 100029
摘    要:针对在研仪器——大气辐射超高光谱探测仪的临边探测模式,模拟计算了大气温度和水汽的权重函数。以此为基础,利用信息量和权重函数线性化方法,结合仪器的可探测亮温阈值0.3 K,计算并分析6种大气状态下,大气温度和水汽混合比廓线在不同反演精度条件下可获得的光谱通道数,在满足最佳光谱通道数200的要求下,理论上预估其反演精度。温度廓线整体反演精度为0.6 K,水汽混合比廓线反演精度可达到5%,但热带大气在16~20 km高度的水汽廓线反演精度仅为10%。反演精度预估,仅提供了一种全面认识仪器性能的方法,精度的确定还有赖于真实探测数据的获取和反演方法。

关 键 词:临边探测    权重函数    信息量    反演精度
收稿时间:2020-02-10

Estimating the Inversion Accuracy of Atmospheric Temperature and Water Vapor Profile Under Limb Sounding
Institution:Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Abstract:Profiles of atmospheric temperature and water vapor are important for studying atmospheric state and play an important role in the energy balance of earth-atmosphere system. Limb remote sensing is an important means to obtain the profile of atmospheric parameters. The atmospheric radiation ultra-high spectral detector developed by Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has a detection band range of 650-3050 cm-1 and the spectral resolution on limb view is as high as 0.015 cm-1, which will be the highest spectral resolution that the world's Fourier spectral detector can achieve. A method by using information and weighting function linearization are proposed to evaluate the inversion accuracy of the research instrument in advance. Weighting functions of atmospheric temperature and water vapor at 16 different tangent points are simulated and calculated by RFM model. The degree of signal freedom and the entropy reduction are also calculated by the information content method, and the optimal number of inversion channels is determined to be 200 by the stepwise iterative algorithm. Combined with the threshold (0.3 K) of detectable brightness temperature and the linearized weighting function of the instrument, the available spectral channel numbers of atmospheric temperature and volume mixing ratio of water vapor profiles under different inversion accuracy of six atmosphere models (US standard atmosphere, tropical atmosphere, middle-latitude summer atmosphere, middle-latitude winter atmosphere, subarctic summer atmosphere, subarctic winter atmosphere) are calculated and analyzed, and the inversion accuracy is estimated theoretically. On the demanded optimal 200 channels, the inversion accuracy of the whole temperature profile is 0.6 K, but if the inversion accuracy of the temperature profile is required to be 0.5 K, the number of channels available for inversion at a higher tangent height is smaller. Except the tropical atmosphere model, there are enough channels for the other five atmosphere models meeting 5% accuracy demands of the inversion of water vapor volume mixing ratio profiles. However, the inversion of the water vapor profile of the tropical atmosphere has barely enough channels at 16-20 km for 10% relative inversion accuracy of volume mixing ratio. The number of channels usable for atmospheric parameters retrieving increases by the decreasing of inversion accuracy. Among six atmosphere models, the tropical atmosphere is relatively special and its inversion accuracy is lower, which may be related to the unique temperature profile of the tropical atmosphere. There is no isothermal layer in the tropical atmosphere, which may lead to fewer atmospheric parameter inversion channels near the height of sharp temperature transition.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号