首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LIDAR DETERMINATION OF THE ENTRAINMENT ZONE THICKNESS AT THE TOP OF THE UNSTABLE MARINE ATMOSPHERIC BOUNDARY LAYER
Authors:CYRILLE FLAMANT  JACQUES PELON  PIERRE H FLAMANT  PIERRE DURAND
Institution:(1) Service d'Aéronomie du CNRS, Université Pierre et Marie Curie, Paris, France;(2) Laboratoire de Météorologie Dynamique du CNRS, Palaiseau, France;(3) Laboratoire d'Aérologie, Observatoire Midi Pyrénées, Toulouse, France
Abstract:The thickness of the entrainment zone at the top of the marine atmosphericboundary layer (MABL) has been documented by an airborne lidar on twoconsecutive days during a cold-air outbreak episode over the Mediterranean.In addition to the lidar observations, in situ turbulent flux measurementsat three levels in the MABL were made by a second aircraft. The flights' tracksare broken down in segments 25–30 km long and the data are filtered for theparametrization of turbulent entrainment in the MABL at scales smaller thana few kilometres. The structural parameters of the entrainment zone aredetermined by lidar from the distributions of the instantaneous MABL topheight. The average values Ph0 and Ph2 of the cumulativeprobability distributions are used to define the bottom and top heights of the entrainment zone h0 and h2, respectively. The parameters h0 andh2 are calculated by reference to a linear vertical buoyancy flux profilein the framework of a first-order jump model. The model is constrained by bothlidar and in situ data to determine Ph0 and Ph2 and so h0and h2. In unstable conditions theaverage fraction Ph0 is estimated to be 6.0 ± 1%. It is shown to beslightly sensitive to the presence of cloud at small cloud fractions.The mean value of the ratio of the inversion level buoyancy flux to the surfacebuoyancy flux ARv is found to range from 0.15 to 0.30 depending on the shearin the MABL. The average value is 0.22 ± 0.05. Our resultsare in good agreement with previous analysis at comparable spatial scales.In purely convective conditions, the value of ARv given by theparametrizations fitted to our results is about 0.10–0.12, a value smallerthan the commonly accepted value of 0.2. When compared to previousparametrization results, our proportionality constant for the mechanicalproduction of turbulent kinetic energy is also found to be scaled down, ingood agreement with large-eddy simulation results. It is suggestedthat mesoscale organized motions in the MABL is the source of thisdifference.
Keywords:Unstable atmospheric boundary layer  Entrainment zone  Turbulent kinetic energy shear production
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号