首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study
Authors:I G S van Hooijdonk  A F Moene  M Scheffer  H J H Clercx  B J H van de Wiel
Institution:1.Fluid Dynamics Laboratory and J.M. Burgerscentrum,Eindhoven University of Technology,Eindhoven,The Netherlands;2.Department of Meteorology and Air Quality,Wageningen University and Research Centre,Wageningen,The Netherlands;3.Department of Aquatic Ecology and Water Quality Management,Wageningen University and Research Centre,Wageningen,The Netherlands;4.Department of Remote Sensing and Geosciences,Delft University of Technology,Delft,The Netherlands
Abstract:The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin–Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号