首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trends in Canadian precipitation intensity
Authors:Dáithí A Stone  Andrew J Weaver  Francis W Zwiers
Institution:1. School of Earth and Ocean Sciences , University of Victoria , PO Box 3055, Victoria, BC, V8W 3P6 E-mail: stone@ocean.seos.uvic.ca;2. School of Earth and Ocean Sciences , University of Victoria , PO Box 3055, Victoria, BC, V8W 3P6;3. Canadian Centre for Climate Modelling and Analysis , Meteorological Service of Canada , Victoria, BC
Abstract:Abstract

Past research has unveiled important variations in total precipitation, often related to large‐scale shifts in atmospheric circulation, and consistent with projected responses to enhanced greenhouse warming. More recently, however, it has been realized that important and influential changes in the variability of daily precipitation events have also occurred in the past, often unrelated to changes in total accumulation.

This study aims to uncover variations in daily precipitation intensity over Canada and to compare the observed variations with those in total accumulation and two dominant modes of atmospheric variability, namely the North Atlantic Oscillation (NAO) and the Pacific/North America teleconnection pattern (PNA). Results are examined on both annual and seasonal bases, and with regions defined by similarities in monthly variability.

Seasonally increasing trends in total precipitation that result from increases in all levels of event intensity during the 20th century are found in southern areas of Canada. During the latter half of the century increases are concentrated in heavy and intermediate events, with the largest changes occurring in Arctic areas. Variations in precipitation intensity can, however, be unrelated to variations in the total accumulation. Consistent with these differences, the precipitation responses to the NAO and PNA are often found to occur only at specific levels of event intensity. Precipitation responses to the NAO occur in northeastern regions in summer and winter with the intensity affected in both seasons. The PNA strongly influences precipitation in many regions of the country during autumn and winter. In particular, it strongly influences variations in southern British Columbia and the Prairies, affecting the intensity in only some areas. However, it only influences the frequency of heavier events in autumn and winter in Ontario and southern Quebec, where this response is actually more robust than the response in total accumulation. During these seasons a negative PNA generally leads to more extreme precipitation events.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号