首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part I: diagnostics and theory
Authors:Violeta E Toma  Peter J Webster
Institution:(1) School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Abstract:We examine the mean and transient state of the intertropical convergence zone (ITCZ) by analyzing data and using simple theory. We concentrate on the tropical eastern Pacific Ocean noting that there exists in this region a well-developed mean ITCZ. Furthermore, it is a region where there has been considerable discussion in the literature of whether easterly waves develop in situ or propagate westwards from the Atlantic Ocean. The region is typical of tropical regions where there is a strong cross-equatorial pressure gradient (CEPG): mean convection well removed from the equator but located equatorward of the maximum sea-surface temperature (SST) and minimum sea level pressure (MSLP). Further to the west, near the dateline where the CEPG is much smaller, convection is weaker and collocated with SST and MSLP extrema. It is argued that in regions of significant CEPG that the near-equatorial tropical system is inertially unstable and that the rectification of the instability for a given CEPG determines the location and intensity of the climatological ITCZ. Using simple theoretical arguments, we develop an expression for the mean latitude of the ITCZ as a function of the CEPG. We note on a day-by-day basis that the ITCZ is highly transient state with variability occurring on 3–8 day time scales. Transients with amplitudes about half of the mean ITCZ, propagate northwards from the near-equatorial southern hemisphere as anomalous meridional oscillations, eventually amplifying convection in the vicinity of the mean ITCZ. It is argued that in these longitudes of strong CEPG the mean ITCZ is continually inertially unstable with advections of anticylonic vorticity across the equator resulting in the creation of an oscillating divergence–convergence doublet. The low-level convergence produces convection and the resultant vortex tube stretching generates cyclonic vorticity which counteracts the northward advection of anticylonic vorticity. During a cycle, the mid-troposphere heating near 10oN oscillates between 6 and 12 K/day at the inertial frequency of the latitude of the mean convection. As a result, there exists an anomalous and shallower, oscillating meridional circulation with a magnitude about 50% of the mean ITCZ associated with the stable state following the generation of anticylonic vorticity. Further, it is argued that the instabilities of the ITCZ are directly associated with in situ development of easterly waves which occur with the inertial period of the latitude of the mean ITCZ. The dynamical sequences and the genesis of easterly waves are absent in the regions further to the east where the CEPG is much weaker or absent altogether. In a companion study (Part II), numerical experiments are conducted to test the hypothesis raised in the present study.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号